Construction frontier molecular orbital prediction model with transfer learning for organic materials

边疆 学习迁移 分子轨道 计算机科学 化学 人工智能 地理 有机化学 分子 考古
作者
Xinyu Peng,Jiaojiao Liang,Kuo Wang,Xiaojie Zhao,Zhiyan Peng,Zhennan Li,Jinhui Zeng,Lan Zheng,Min Lei,Di Huang
出处
期刊:npj computational materials [Springer Nature]
卷期号:10 (1) 被引量:16
标识
DOI:10.1038/s41524-024-01403-6
摘要

Abstract The frontier molecular orbitals of organic semiconductor materials play a crucial role in the performance of photoelectric devices, including organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs), and organic photodetectors (OPDs). In this work, a model for predicting frontier molecular orbital of organic materials, including HOMO and LUMO levels, is established with the extreme gradient boosting algorithm and Klekota-Roth fingerprints. The correlation coefficients of HOMO or LUMO energy levels in the testing set are 0.75 and 0.84 in the transfer model from 11,626 DFT data in Harvard Energy database to 1198 experimental data in literature. The difference between the ML predicted value and the experimental value is smaller than the difference between ML prediction and DFT calculation, always less than 10%. Moreover, based on correlation and SHAP interpretability analysis, 13 key structural fragments influencing energy levels are selected to further verify the effective regulation of the frontier molecular orbital by the key structural fragments in practical applications. Considering the completely opposite regulatory functions of key structural fragments on HOMO and LUMO energy levels, four new Y6 derivatives, Y-PCP, Y-P6F, Y-PCF, and Y-P4FC, are designed to flexibly modify the HOMO and LUMO energy levels. The prediction trends of ML align closely with the computational trends from DFT. It is worth noting that the accuracy of LUMO energy level prediction by the prediction model makes up for the instability of DFT calculation on LUMO energy level. This work offers a cost-effective method to accelerate the acquisition of electronic properties of organic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓天发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
完美世界应助savesunshine1022采纳,获得10
2秒前
万能图书馆应助俊逸紫伊采纳,获得10
2秒前
哭泣的发卡完成签到,获得积分20
2秒前
大模型应助fjhsg25采纳,获得10
3秒前
5秒前
pjj完成签到 ,获得积分10
6秒前
7秒前
8秒前
Dragonfln完成签到,获得积分10
8秒前
爆米花应助哭泣的发卡采纳,获得10
8秒前
小薯条发布了新的文献求助10
8秒前
mmddlj发布了新的文献求助10
10秒前
10秒前
NanArtist应助自然的安波采纳,获得10
11秒前
似宁完成签到,获得积分20
12秒前
Ava应助宁好采纳,获得10
12秒前
搜集达人应助JJP采纳,获得10
12秒前
14秒前
Caojiaqi完成签到,获得积分10
14秒前
小王发布了新的文献求助10
14秒前
15秒前
Rangi完成签到,获得积分10
16秒前
17秒前
18秒前
wxyshare应助小薯条采纳,获得10
19秒前
Alice完成签到,获得积分10
19秒前
chizhi完成签到,获得积分10
19秒前
小九完成签到,获得积分10
20秒前
斯文的珊完成签到 ,获得积分10
20秒前
爆米花应助可爱鬼boom采纳,获得10
20秒前
yuxiuzhang发布了新的文献求助10
21秒前
小娄娄娄发布了新的文献求助10
21秒前
22秒前
各方面发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475655
求助须知:如何正确求助?哪些是违规求助? 4577327
关于积分的说明 14361496
捐赠科研通 4505243
什么是DOI,文献DOI怎么找? 2468525
邀请新用户注册赠送积分活动 1456156
关于科研通互助平台的介绍 1429890