Generating 3D Models for UAV-Based Detection of Riparian PET Plastic Bottle Waste: Integrating Local Social Media and InstantMesh

计算机科学 人工智能 鉴定(生物学) 对象(语法) 相似性(几何) 钥匙(锁) 目标检测 机器学习 分割 计算机视觉 模式识别(心理学) 数据挖掘 图像(数学) 计算机安全 植物 生物
作者
Shijun Pan,Keisuke YOSHIDA,Daichi Shimoe,Takashi Kojima,Satoshi Nishiyama
出处
期刊:Drones [MDPI AG]
卷期号:8 (9): 471-471 被引量:2
标识
DOI:10.3390/drones8090471
摘要

In recent years, waste pollution has become a severe threat to riparian environments worldwide. Along with the advancement of deep learning (DL) algorithms (i.e., object detection models), related techniques have become useful for practical applications. This work attempts to develop a data generation approach to generate datasets for small target recognition, especially for recognition in remote sensing images. A relevant point is that similarity between data used for model training and data used for testing is crucially important for object detection model performance. Therefore, obtaining training data with high similarity to the monitored objects is a key objective of this study. Currently, Artificial Intelligence Generated Content (AIGC), such as single target objects generated by Luma AI, is a promising data source for DL-based object detection models. However, most of the training data supporting the generated results are not from Japan. Consequently, the generated data are less similar to monitored objects in Japan, having, for example, different label colors, shapes, and designs. For this study, the authors developed a data generation approach by combining social media (Clean-Up Okayama) and single-image-based 3D model generation algorithms (e.g., InstantMesh) to provide a reliable reference for future generations of localized data. The trained YOLOv8 model in this research, obtained from the S2PS (Similar to Practical Situation) AIGC dataset, produced encouraging results (high F1 scores, approximately 0.9) in scenario-controlled UAV-based riparian PET bottle waste identification tasks. The results of this study show the potential of AIGC to supplement or replace real-world data collection and reduce the on-site work load.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南枝完成签到,获得积分20
1秒前
zhiwei发布了新的文献求助10
1秒前
jing完成签到,获得积分10
1秒前
2秒前
3秒前
XM完成签到,获得积分10
4秒前
4秒前
ABEDO发布了新的文献求助10
6秒前
慢慢发布了新的文献求助10
6秒前
6秒前
7秒前
lz发布了新的文献求助100
7秒前
Wangle发布了新的文献求助30
7秒前
8秒前
8秒前
yangerbao发布了新的文献求助30
9秒前
Master完成签到 ,获得积分10
9秒前
11秒前
11秒前
12秒前
13秒前
zhiwei发布了新的文献求助10
13秒前
魏艳秋发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
IMP完成签到 ,获得积分10
15秒前
15秒前
15秒前
Akim应助乐观伟诚采纳,获得10
16秒前
yaomax完成签到 ,获得积分10
16秒前
16秒前
18秒前
有魅力老头完成签到,获得积分10
18秒前
19秒前
幸福台灯发布了新的文献求助10
19秒前
幸福台灯发布了新的文献求助10
19秒前
幸福台灯发布了新的文献求助10
19秒前
幸福台灯发布了新的文献求助10
19秒前
Ohh发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540553
求助须知:如何正确求助?哪些是违规求助? 4627182
关于积分的说明 14602572
捐赠科研通 4568187
什么是DOI,文献DOI怎么找? 2504418
邀请新用户注册赠送积分活动 1482011
关于科研通互助平台的介绍 1453645