计算机科学
人工智能
鉴定(生物学)
对象(语法)
相似性(几何)
钥匙(锁)
目标检测
机器学习
分割
计算机视觉
模式识别(心理学)
数据挖掘
图像(数学)
计算机安全
植物
生物
作者
Shijun Pan,Keisuke YOSHIDA,Daichi Shimoe,Takashi Kojima,Satoshi Nishiyama
出处
期刊:Drones
[MDPI AG]
日期:2024-09-09
卷期号:8 (9): 471-471
被引量:2
标识
DOI:10.3390/drones8090471
摘要
In recent years, waste pollution has become a severe threat to riparian environments worldwide. Along with the advancement of deep learning (DL) algorithms (i.e., object detection models), related techniques have become useful for practical applications. This work attempts to develop a data generation approach to generate datasets for small target recognition, especially for recognition in remote sensing images. A relevant point is that similarity between data used for model training and data used for testing is crucially important for object detection model performance. Therefore, obtaining training data with high similarity to the monitored objects is a key objective of this study. Currently, Artificial Intelligence Generated Content (AIGC), such as single target objects generated by Luma AI, is a promising data source for DL-based object detection models. However, most of the training data supporting the generated results are not from Japan. Consequently, the generated data are less similar to monitored objects in Japan, having, for example, different label colors, shapes, and designs. For this study, the authors developed a data generation approach by combining social media (Clean-Up Okayama) and single-image-based 3D model generation algorithms (e.g., InstantMesh) to provide a reliable reference for future generations of localized data. The trained YOLOv8 model in this research, obtained from the S2PS (Similar to Practical Situation) AIGC dataset, produced encouraging results (high F1 scores, approximately 0.9) in scenario-controlled UAV-based riparian PET bottle waste identification tasks. The results of this study show the potential of AIGC to supplement or replace real-world data collection and reduce the on-site work load.
科研通智能强力驱动
Strongly Powered by AbleSci AI