Research on Deep Learning Detection Model for Pedestrian Objects in Complex Scenes Based on Improved YOLOv7

行人 行人检测 计算机科学 深度学习 人工智能 计算机视觉 人机交互 机器学习 工程类 运输工程
作者
Jun Hu,Yongqi Zhou,Hao Wang,Peng Qiao,Wan Hanim Nadrah Wan Muda
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (21): 6922-6922
标识
DOI:10.3390/s24216922
摘要

Objective: Pedestrian detection is very important for the environment perception and safety action of intelligent robots and autonomous driving, and is the key to ensuring the safe action of intelligent robots and auto assisted driving. Methods: In response to the characteristics of pedestrian objects occupying a small image area, diverse poses, complex scenes and severe occlusion, this paper proposes an improved pedestrian object detection method based on the YOLOv7 model, which adopts the Convolutional Block Attention Module (CBAM) attention mechanism and Deformable ConvNets v2 (DCNv2) in the two Efficient Layer Aggregation Network (ELAN) modules of the backbone feature extraction network. In addition, the detection head is replaced with a Dynamic Head (DyHead) detector head with an attention mechanism; unnecessary background information around the pedestrian object is also effectively excluded, making the model learn more concentrated feature representations. Results: Compared with the original model, the log-average miss rate of the improved YOLOv7 model is significantly reduced in both the Citypersons dataset and the INRIA dataset. Conclusions: The improved YOLOv7 model proposed in this paper achieved good performance improvement in different pedestrian detection problems. The research in this paper has important reference significance for pedestrian detection in complex scenes such as small, occluded and overlapping objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123完成签到,获得积分10
1秒前
1秒前
Winner2019完成签到,获得积分10
2秒前
3秒前
Tangyartie完成签到 ,获得积分10
3秒前
茉莉静颖应助MM采纳,获得10
3秒前
3秒前
Lmy完成签到,获得积分10
4秒前
翟威发布了新的文献求助10
4秒前
珺儿完成签到,获得积分10
4秒前
DKO253完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
学术蜗牛完成签到,获得积分10
6秒前
6秒前
yue发布了新的文献求助10
6秒前
TiY发布了新的文献求助10
7秒前
7秒前
8秒前
科研通AI5应助小软采纳,获得10
8秒前
August发布了新的文献求助10
9秒前
ze发布了新的文献求助10
9秒前
WAM发布了新的文献求助10
10秒前
11秒前
科研小Li发布了新的文献求助10
12秒前
健忘捕发布了新的文献求助10
12秒前
俭朴幻枫发布了新的文献求助10
12秒前
13秒前
茨茨喵喵发布了新的文献求助10
13秒前
xixi发布了新的文献求助10
15秒前
luke17743508621完成签到 ,获得积分10
15秒前
15秒前
15秒前
酷波er应助研友_V8RmmZ采纳,获得10
16秒前
小牧鱼完成签到,获得积分10
16秒前
17秒前
有足量NaCl发布了新的文献求助10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789298
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269281
捐赠科研通 3050758
什么是DOI,文献DOI怎么找? 1674155
邀请新用户注册赠送积分活动 802507
科研通“疑难数据库(出版商)”最低求助积分说明 760693