Research on Deep Learning Detection Model for Pedestrian Objects in Complex Scenes Based on Improved YOLOv7

行人 行人检测 计算机科学 深度学习 人工智能 计算机视觉 人机交互 机器学习 工程类 运输工程
作者
Jun Hu,Yongqi Zhou,Hao Wang,Peng Qiao,Wan Hanim Nadrah Wan Muda
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (21): 6922-6922
标识
DOI:10.3390/s24216922
摘要

Objective: Pedestrian detection is very important for the environment perception and safety action of intelligent robots and autonomous driving, and is the key to ensuring the safe action of intelligent robots and auto assisted driving. Methods: In response to the characteristics of pedestrian objects occupying a small image area, diverse poses, complex scenes and severe occlusion, this paper proposes an improved pedestrian object detection method based on the YOLOv7 model, which adopts the Convolutional Block Attention Module (CBAM) attention mechanism and Deformable ConvNets v2 (DCNv2) in the two Efficient Layer Aggregation Network (ELAN) modules of the backbone feature extraction network. In addition, the detection head is replaced with a Dynamic Head (DyHead) detector head with an attention mechanism; unnecessary background information around the pedestrian object is also effectively excluded, making the model learn more concentrated feature representations. Results: Compared with the original model, the log-average miss rate of the improved YOLOv7 model is significantly reduced in both the Citypersons dataset and the INRIA dataset. Conclusions: The improved YOLOv7 model proposed in this paper achieved good performance improvement in different pedestrian detection problems. The research in this paper has important reference significance for pedestrian detection in complex scenes such as small, occluded and overlapping objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KKLD完成签到,获得积分10
1秒前
Crystal完成签到,获得积分10
1秒前
听闻发布了新的文献求助10
1秒前
谢亭亭发布了新的文献求助10
2秒前
Invariant发布了新的文献求助30
3秒前
科研人完成签到,获得积分10
3秒前
woshikappa应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得20
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
千风完成签到,获得积分10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
酷酷的泥猴桃完成签到,获得积分10
4秒前
4秒前
YY19891219完成签到,获得积分10
4秒前
5秒前
打打应助cyw_1037405062采纳,获得10
5秒前
充电宝应助liangzhy采纳,获得10
6秒前
6秒前
晶莹雪2943发布了新的文献求助10
6秒前
科目三应助闪闪采纳,获得10
7秒前
bigfish完成签到,获得积分10
8秒前
8秒前
focus完成签到 ,获得积分10
8秒前
8秒前
YH应助wuhao0118采纳,获得10
9秒前
xx发布了新的文献求助30
9秒前
gqjq完成签到,获得积分10
9秒前
hxm发布了新的文献求助10
10秒前
大鱼完成签到 ,获得积分10
11秒前
John完成签到 ,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934751
求助须知:如何正确求助?哪些是违规求助? 3480183
关于积分的说明 11007954
捐赠科研通 3210148
什么是DOI,文献DOI怎么找? 1774043
邀请新用户注册赠送积分活动 860670
科研通“疑难数据库(出版商)”最低求助积分说明 797869