亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Conceptual Design of Sit-to-Stand Parallel Motion Six-Bar Mechanisms

巴(单位) 运动(物理) 四连杆机构 计算机科学 概念设计 人工智能 模拟 工程制图 工程类 人机交互 物理 气象学
作者
Zhijie Lyu,Anurag Purwar
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:147 (1) 被引量:2
标识
DOI:10.1115/1.4066036
摘要

Abstract The sit-to-stand (STS) motion is a crucial activity in the daily lives of individuals, and its impairment can significantly impact independence and mobility, particularly among disabled individuals. Addressing this challenge necessitates the design of mobility assist devices that can simultaneously satisfy multiple conflicting constraints. The effective design of such devices often involves the generation of numerous conceptual mechanism designs. This paper introduces an innovative single-degree-of-freedom (DOF) mechanism synthesis process for developing a highly customizable sit-to-stand (STS) mechanical device by integrating rigid body kinematics with machine learning. Unlike traditional mechanism synthesis approaches that primarily focus on limited functional requirements, such as path or motion generation, our proposed design pipeline efficiently generates a large number of 1DOF mechanism geometries and their corresponding motion paths, known as coupler curves. Leveraging a generative deep neural network, we establish a probabilistic distribution of coupler curves and their mapping to mechanism parameters. Additionally, we introduce novel metrics for quantitatively evaluating and prioritizing design concepts. The methodology yields a diverse set of viable conceptual design solutions that adhere to the specified constraints. We showcase various single-degree-of-freedom six-bar linkage mechanisms designed for STS motion, presenting them in a ranked order based on established criteria. While the primary focus is on the integration of STS motion into a versatile mobility assist device, the proposed approach holds broad applicability for addressing design challenges in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
9秒前
情怀应助多情的安雁采纳,获得10
11秒前
24秒前
30秒前
烟花应助科研通管家采纳,获得10
36秒前
46秒前
46秒前
50秒前
妖精发布了新的文献求助10
51秒前
研友_892kOL发布了新的文献求助10
51秒前
53秒前
一次过发布了新的文献求助10
53秒前
威武灵阳完成签到,获得积分10
1分钟前
善学以致用应助研友_892kOL采纳,获得10
1分钟前
myg123完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
端庄书雁发布了新的文献求助10
1分钟前
翼翼发布了新的文献求助10
1分钟前
1分钟前
1分钟前
机智问玉完成签到 ,获得积分10
2分钟前
翼翼完成签到,获得积分10
2分钟前
美罗培南完成签到,获得积分10
2分钟前
2分钟前
zcydbttj2011完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
zqq完成签到,获得积分0
3分钟前
3分钟前
KeYXB完成签到,获得积分10
3分钟前
机智问玉发布了新的文献求助10
3分钟前
3分钟前
端庄书雁发布了新的文献求助10
3分钟前
3分钟前
科研通AI5应助吗喽采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4098982
求助须知:如何正确求助?哪些是违规求助? 3636547
关于积分的说明 11525642
捐赠科研通 3346364
什么是DOI,文献DOI怎么找? 1839163
邀请新用户注册赠送积分活动 906496
科研通“疑难数据库(出版商)”最低求助积分说明 823819