已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Short-Term Electricity Load Forecasting Based on Temporal Fusion Transformer Model

计算机科学 自回归积分移动平均 变压器 循环神经网络 人工神经网络 电力市场 电力系统 期限(时间) 时间序列 人工智能 可靠性工程 实时计算 机器学习 功率(物理) 工程类 电压 物理 电气工程 量子力学
作者
Pham Canh Huy,Minh Nguyen,Nguyen Dang Tien,Tao Thi Quynh Anh
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 106296-106304 被引量:31
标识
DOI:10.1109/access.2022.3211941
摘要

Electricity load forecasting plays an important role in the operation of power systems. Inaccurate forecast would reduce the safety of power supply and affect the economic and social activities as well as national defense and security. In addition, the forecast results also support decision-making on electricity generation and market transactions. Traditional methods such as AR, ARIMA, SARIMA have been widely used to forecast short term electricity load. Recently, load forecasting based on artificial and deep neural networks have shown significant accuracy improvement over traditional statistical models. In this research, a novel recurrent neural network named temporal fusion transformer (TFT) is used to forecast short-term electricity load of Hanoi city. The TFT is a newly developed model and it combines the advantages of several other RNN models such as LSTM and the self-attention mechanism. In addition to historical load data, we use temperature and humidity features, and time features such as calendar month, lunar month, days of the week, hours of the day and holidays. The forecast results of TFT are compared with traditional statistical models as well as well-known RNN models. The compared results show that the proposed method is better than other methods in both MAE and MAPE criteria.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
2秒前
科研达人发布了新的文献求助10
3秒前
脑洞疼应助狂飙的蛋采纳,获得10
4秒前
4秒前
7秒前
领导范儿应助尊敬乐蕊采纳,获得10
8秒前
悠嘻嘻发布了新的文献求助10
9秒前
hby完成签到,获得积分20
12秒前
13秒前
13秒前
SiRui_Wang发布了新的文献求助30
13秒前
15秒前
甜蜜代双完成签到 ,获得积分10
17秒前
18秒前
ni发布了新的文献求助10
20秒前
奇客发布了新的文献求助10
21秒前
21秒前
21秒前
lull发布了新的文献求助10
23秒前
陈明飞发布了新的文献求助10
26秒前
科研通AI5应助zoey采纳,获得10
27秒前
Hello应助1234采纳,获得10
29秒前
30秒前
30秒前
strawking完成签到,获得积分10
31秒前
33秒前
ni完成签到,获得积分10
34秒前
科研通AI5应助Kyle采纳,获得10
35秒前
CXC发布了新的文献求助10
36秒前
donk发布了新的文献求助10
37秒前
strawking发布了新的文献求助10
37秒前
37秒前
宋小七完成签到,获得积分10
38秒前
38秒前
39秒前
41秒前
xiaomeng完成签到 ,获得积分10
44秒前
和光同尘完成签到,获得积分10
50秒前
充电宝应助donk采纳,获得10
51秒前
zfj完成签到 ,获得积分10
56秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784705
求助须知:如何正确求助?哪些是违规求助? 3329891
关于积分的说明 10243654
捐赠科研通 3045221
什么是DOI,文献DOI怎么找? 1671596
邀请新用户注册赠送积分活动 800484
科研通“疑难数据库(出版商)”最低求助积分说明 759416