Fully automatic tumor segmentation of breast ultrasound images with deep learning

分割 计算机科学 人工智能 深度学习 模式识别(心理学) 乳腺超声检查 像素 接收机工作特性 Sørensen–骰子系数 图像分割 计算机视觉 乳腺癌 机器学习 乳腺摄影术 癌症 医学 内科学
作者
Shuai Zhang,Mei Liao,Jing Wang,Yongyi Zhu,Yanling Zhang,Jian Zhang,Rongqin Zheng,Linyang Lv,Dejiang Zhu,Hao Chen,Wei Wang
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:24 (1) 被引量:27
标识
DOI:10.1002/acm2.13863
摘要

Breast ultrasound (BUS) imaging is one of the most prevalent approaches for the detection of breast cancers. Tumor segmentation of BUS images can facilitate doctors in localizing tumors and is a necessary step for computer-aided diagnosis systems. While the majority of clinical BUS scans are normal ones without tumors, segmentation approaches such as U-Net often predict mass regions for these images. Such false-positive problem becomes serious if a fully automatic artificial intelligence system is used for routine screening.In this study, we proposed a novel model which is more suitable for routine BUS screening. The model contains a classification branch that determines whether the image is normal or with tumors, and a segmentation branch that outlines tumors. Two branches share the same encoder network. We also built a new dataset that contains 1600 BUS images from 625 patients for training and a testing dataset with 130 images from 120 patients for testing. The dataset is the largest one with pixel-wise masks manually segmented by experienced radiologists. Our code is available at https://github.com/szhangNJU/BUS_segmentation.The area under the receiver operating characteristic curve (AUC) for classifying images into normal/abnormal categories was 0.991. The dice similarity coefficient (DSC) for segmentation of mass regions was 0.898, better than the state-of-the-art models. Testing on an external dataset gave a similar performance, demonstrating a good transferability of our model. Moreover, we simulated the use of the model in actual clinic practice by processing videos recorded during BUS scans; the model gave very low false-positive predictions on normal images without sacrificing sensitivities for images with tumors.Our model achieved better segmentation performance than the state-of-the-art models and showed a good transferability on an external test set. The proposed deep learning architecture holds potential for use in fully automatic BUS health screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张杨林完成签到,获得积分10
刚刚
瀛瀛完成签到 ,获得积分10
1秒前
吴硫完成签到,获得积分20
2秒前
laihama完成签到,获得积分10
2秒前
2秒前
2秒前
mamba完成签到 ,获得积分10
2秒前
打打应助tanwenbin采纳,获得10
2秒前
ZAy4gG发布了新的文献求助10
2秒前
于于于完成签到,获得积分10
3秒前
鱼咬羊发布了新的文献求助10
3秒前
情怀应助QQ采纳,获得10
3秒前
玩儿发布了新的文献求助10
3秒前
3秒前
口农完成签到,获得积分10
4秒前
盼山发布了新的文献求助10
4秒前
朴素大叔完成签到,获得积分20
4秒前
4秒前
21完成签到,获得积分10
5秒前
赘婿应助美满乌冬面采纳,获得10
5秒前
炙热静白完成签到,获得积分10
6秒前
6秒前
lisasasasa发布了新的文献求助10
7秒前
8秒前
尘染完成签到 ,获得积分10
8秒前
英姑应助君君采纳,获得10
8秒前
小苔藓完成签到,获得积分10
9秒前
平生完成签到 ,获得积分10
9秒前
阳阳完成签到,获得积分10
9秒前
9秒前
纱夏完成签到,获得积分10
9秒前
yy完成签到 ,获得积分10
10秒前
Hyde完成签到,获得积分10
10秒前
你好发布了新的文献求助10
10秒前
科研通AI5应助玩儿采纳,获得10
10秒前
9羊发布了新的文献求助10
11秒前
zxm完成签到,获得积分10
11秒前
852应助小小柴采纳,获得10
11秒前
李健应助橙啊晨采纳,获得10
11秒前
伍子胥发布了新的文献求助20
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808560
求助须知:如何正确求助?哪些是违规求助? 3353267
关于积分的说明 10364381
捐赠科研通 3069461
什么是DOI,文献DOI怎么找? 1685550
邀请新用户注册赠送积分活动 810616
科研通“疑难数据库(出版商)”最低求助积分说明 766214