Multi-Level Reservoir Identification with Logs Based on Machine Learning

油藏计算 计算机科学 油田 岩石物理学 人工智能 卷积神经网络 机器学习 鉴定(生物学) 人工神经网络 数据挖掘 测井 熵(时间箭头) 石油工程 循环神经网络 地质学 岩土工程 植物 物理 量子力学 多孔性 生物
作者
Gang Luo,Lizhi Xiao,Guangzhi Liao,Sihui Luo,Rongbo Shao,Jun Zhou,Guojun Li,Shengluan Hou,Jiewen Wu
标识
DOI:10.30632/spwla-2022-0114
摘要

Machine learning algorithms have become powerful tools for modeling in the engineering field. They are suitable for solving problems that can't be effectively solved by traditional physical models or empirical models due to the complex relationship of variables. Since the traditional interpretation method of log data is based on petrophysical mechanisms and models, many assumptions are needed, which may lead to deviations in practical application. Therefore, it is of great significance to achieve reservoir fluid identification when using machine learning processing and interpreting log data. The existing reservoir identification methods have not thoroughly mined the internal relationships of log data. Moreover, the distribution of reservoir categories is seriously unbalanced. Reservoirs with similar physical properties are easily confused in identification. We propose an effective method of machine learning to solve the above problems. A long short-term memory network (LSTM) is used to characterize the time series characteristics of logs varying with depth domain. The kernel of the convolutional neural network (CNN) is used to slide on log curves to characterize their relationships. Considering the unbalanced distribution and the different development values of reservoirs categories, the weighted cross-entropy loss function is used to improve the weight of oil-bearing reservoirs with less distribution but higher development value when model training. According to the difference and similarity of reservoir physical properties, a multi-level reservoir identification process is designed: Level-I (reservoir and non-reservoir), Level-II (oil-bearing reservoirs, water-bearing reservoirs, and dry layer), and Level-III (oil layer, oil-water layer, poor oil layer, and water layer, oily-water layer). This method is verified on the log data of oil fields, in which the reservoir categories distribution is highly unbalanced. Moreover, the fraction of oil-bearing reservoirs is 9%, which agreement with the actual industrial situation. A series of comparative experiments proved that the parallel network structure of LSTM and CNN can fully examine the internal relationships and sequence characteristics of log curves. The weighted cross-entropy loss function significantly improves the fluid identification accuracy of oil-bearing reservoirs. Moreover, the multi-level reservoir identification method is more accurate in avoiding the identification confusion of reservoirs with similar physical properties. The experimental results demonstrate that this method is very practical and useful to help geological experts and engineers find reservoirs and complete evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
hahhhhhh2完成签到,获得积分10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
3秒前
4秒前
科研通AI2S应助彳亍者采纳,获得10
4秒前
乐乐应助冷傲不评采纳,获得10
4秒前
褐板完成签到,获得积分10
5秒前
yyl完成签到,获得积分10
6秒前
8秒前
Hello应助淡淡的凌旋采纳,获得10
8秒前
光亮白羊发布了新的文献求助10
9秒前
李爱国应助只昂张采纳,获得10
9秒前
10秒前
嗯啊完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
silence完成签到,获得积分10
11秒前
11秒前
11秒前
Faith发布了新的文献求助10
11秒前
12秒前
英俊的铭应助珂儿采纳,获得10
13秒前
13秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133242
求助须知:如何正确求助?哪些是违规求助? 3670057
关于积分的说明 11605422
捐赠科研通 3366639
什么是DOI,文献DOI怎么找? 1849624
邀请新用户注册赠送积分活动 913224
科研通“疑难数据库(出版商)”最低求助积分说明 828500