清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Mapping Forest Canopy Height at Large Scales Using ICESat-2 and Landsat: An Ecological Zoning Random Forest Approach

激光雷达 环境科学 遥感 天蓬 树冠 森林资源清查 范畴变量 均方误差 地理 森林经营 数学 统计 农林复合经营 考古
作者
Zhaocong Wu,Fanglin Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:20
标识
DOI:10.1109/tgrs.2022.3231926
摘要

Forest canopy height (FCH) is a crucial indicator in the calculation of forest biomass and carbon sinks. There are various methods to measure FCH, such as space-borne light detection and ranging (LiDAR), but their data are spatially discrete and do not provide continuous FCH maps. Therefore, an FCH estimation method that associates sparse LiDAR data with spatially continuous variables is required. The traditional approach of constructing a single model overlooks the spatial variability in forest growth, which will limit the FCH accuracy. Considering the distinct nature of forest in different ecological zones, the following hold. First, we proposed an ecological zoning random forest (EZRF) model in 33 ecological zones in China. Compared with the total zone RF (TZRF) model, the EZRF model showed a greater potential, which was 21.5%–36.5% more accurate than the TZRF model. Second, we analyzed a total of 62 variables related to forest growth, including Landsat variables and ancillary variables (forest canopy cover, bioclimatic, topographic, and hillshade factors). An insight into variable selection in FCH modeling was provided by analyzing the prediction accuracy of FCH under different categorical variables and analyzing the importance of variables in different ecological zones. Third, finally, we produced a 30-m continuous FCH map by the EZRF model. Compared with the airborne LiDAR data, the FCH prediction results produced a root mean square error (RMSE) of 2.50–5.35 m, which were 41%–72% more precisely than the Global FCH, 2019. The results demonstrate the effectiveness of our proposed method and contribute to the study of forest carbon sinks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
36秒前
42秒前
crown完成签到,获得积分10
46秒前
1分钟前
1分钟前
实验狗发布了新的文献求助10
1分钟前
hongt05完成签到 ,获得积分10
1分钟前
SCI的芷蝶完成签到 ,获得积分10
2分钟前
瓦力完成签到 ,获得积分10
2分钟前
姜生在树上完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
WYK完成签到 ,获得积分10
4分钟前
4分钟前
冷傲半邪完成签到,获得积分10
4分钟前
wentao发布了新的文献求助10
4分钟前
5分钟前
5分钟前
李燊发布了新的文献求助10
5分钟前
现实的俊驰完成签到 ,获得积分10
5分钟前
Benhnhk21完成签到,获得积分10
6分钟前
6分钟前
6分钟前
7分钟前
yuhang完成签到 ,获得积分10
7分钟前
7分钟前
斯文的傲珊完成签到,获得积分10
7分钟前
研友_nE1dDn发布了新的文献求助20
7分钟前
SciGPT应助研友_nE1dDn采纳,获得10
8分钟前
习月阳完成签到,获得积分10
8分钟前
zilhua完成签到,获得积分10
8分钟前
8分钟前
李燊发布了新的文献求助10
8分钟前
沿途有你完成签到 ,获得积分10
9分钟前
烟花应助李燊采纳,获得10
9分钟前
9分钟前
Grace0621发布了新的文献求助10
9分钟前
科研通AI5应助universe_hhy采纳,获得50
9分钟前
sowhat完成签到 ,获得积分10
10分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830495
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475449
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702209
邀请新用户注册赠送积分活动 818825
科研通“疑难数据库(出版商)”最低求助积分说明 771101