RFIA-Net: Rich CNN-transformer network based on asymmetric fusion feature aggregation to classify stage I multimodality oesophageal cancer images

计算机科学 卷积神经网络 模式识别(心理学) 人工智能 特征提取 变压器 特征(语言学) 语言学 量子力学 物理 哲学 电压
作者
Zhicheng Zhou,Gang Sun,Long Yu,Shengwei Tian,Guangli Xiao,Junwen Wang,Shaofeng Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:118: 105703-105703 被引量:11
标识
DOI:10.1016/j.engappai.2022.105703
摘要

Endoscopic images of oesophageal cancer have the characteristics of rich colours; furthermore, the small lesions are similar to the oesophageal wall tissue, and the pathological images have the characteristics of various staining methods, different shapes, and rich texture details. Aiming at the above characteristics and combining the unique advantages of convolutional architectures and the development of vision transformers in computer vision tasks, in this paper, for the stage I multimodality oesophageal cancer image classification task, we design an efficient hybrid architecture that leverages the local modelling capabilities and powerful semantic feature extraction capabilities of convolutional neural networks and the ability of transformers to extract global information. And combined with the structural reparameterization strategy to further improve the model expression. Specifically, our architecture consists of a feature extraction module and a feature enhancement module. In the feature enhancement module, we supplement the semantic information of each branch by continuously exchanging information between the two branches, which further improves the performance of the network. Furthermore, we propose an asymmetric fusion module that allows features to further enhance the feature relationships between different branches through spatial translation and channel swapping. Compared with networks such as ResNet-18, our proposed method achieves the best results for oesophageal cancer image classification on both tasks on the XJMU-XJU stage I multimodal oesophageal cancer dataset. The proposed method achieved an AUC of 0.9973 and an ACC of 0.9902 on the staging task and achieved a recall of 0.9742 and an ACC of 0.9750 on the differentiation task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天开心完成签到 ,获得积分10
1秒前
在水一方完成签到 ,获得积分10
3秒前
whitepiece完成签到,获得积分10
4秒前
HuiHui发布了新的文献求助10
5秒前
Balance Man完成签到 ,获得积分10
5秒前
小张完成签到 ,获得积分10
7秒前
life的半边天完成签到 ,获得积分10
10秒前
onevip完成签到,获得积分0
11秒前
芒果布丁完成签到 ,获得积分10
12秒前
zqlxueli完成签到 ,获得积分10
12秒前
steven完成签到 ,获得积分10
13秒前
qiancib202完成签到,获得积分10
14秒前
思源应助leecarp采纳,获得10
21秒前
21秒前
benzene完成签到 ,获得积分10
22秒前
Tibbar完成签到 ,获得积分10
23秒前
轩辕德地完成签到,获得积分10
24秒前
Ava应助飞云采纳,获得10
26秒前
26秒前
28秒前
饱满一手完成签到 ,获得积分10
30秒前
32秒前
33秒前
zhangjw完成签到 ,获得积分10
34秒前
35秒前
Hofury完成签到 ,获得积分10
38秒前
骏驰天下发布了新的文献求助10
39秒前
牛奶拌可乐完成签到 ,获得积分10
40秒前
轻松元绿完成签到 ,获得积分10
44秒前
小超完成签到,获得积分10
44秒前
小马甲应助骏驰天下采纳,获得10
45秒前
骏驰天下完成签到,获得积分10
52秒前
CMD完成签到 ,获得积分10
53秒前
111222333完成签到 ,获得积分10
54秒前
091完成签到 ,获得积分10
55秒前
如泣草芥完成签到,获得积分0
58秒前
c123完成签到 ,获得积分10
59秒前
qqq完成签到 ,获得积分10
1分钟前
开拖拉机的医学僧完成签到 ,获得积分10
1分钟前
bc应助大欽欽采纳,获得20
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402450
捐赠科研通 3077226
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743