RFIA-Net: Rich CNN-transformer network based on asymmetric fusion feature aggregation to classify stage I multimodality oesophageal cancer images

计算机科学 卷积神经网络 模式识别(心理学) 人工智能 特征提取 变压器 特征(语言学) 语言学 量子力学 物理 哲学 电压
作者
Zhicheng Zhou,Gang Sun,Long Yu,Shengwei Tian,Guangli Xiao,Junwen Wang,Shaofeng Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:118: 105703-105703 被引量:11
标识
DOI:10.1016/j.engappai.2022.105703
摘要

Endoscopic images of oesophageal cancer have the characteristics of rich colours; furthermore, the small lesions are similar to the oesophageal wall tissue, and the pathological images have the characteristics of various staining methods, different shapes, and rich texture details. Aiming at the above characteristics and combining the unique advantages of convolutional architectures and the development of vision transformers in computer vision tasks, in this paper, for the stage I multimodality oesophageal cancer image classification task, we design an efficient hybrid architecture that leverages the local modelling capabilities and powerful semantic feature extraction capabilities of convolutional neural networks and the ability of transformers to extract global information. And combined with the structural reparameterization strategy to further improve the model expression. Specifically, our architecture consists of a feature extraction module and a feature enhancement module. In the feature enhancement module, we supplement the semantic information of each branch by continuously exchanging information between the two branches, which further improves the performance of the network. Furthermore, we propose an asymmetric fusion module that allows features to further enhance the feature relationships between different branches through spatial translation and channel swapping. Compared with networks such as ResNet-18, our proposed method achieves the best results for oesophageal cancer image classification on both tasks on the XJMU-XJU stage I multimodal oesophageal cancer dataset. The proposed method achieved an AUC of 0.9973 and an ACC of 0.9902 on the staging task and achieved a recall of 0.9742 and an ACC of 0.9750 on the differentiation task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助张滢蕊采纳,获得10
1秒前
animato完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
小张爱学习完成签到,获得积分20
3秒前
KY完成签到 ,获得积分10
3秒前
负责从丹发布了新的文献求助10
4秒前
jmn完成签到,获得积分10
5秒前
WANGCHU发布了新的文献求助10
5秒前
6秒前
MsFelinus发布了新的文献求助10
6秒前
呆萌路灯完成签到,获得积分10
6秒前
Zzh发布了新的文献求助10
6秒前
碧蓝鸡翅发布了新的文献求助30
6秒前
昏睡的炎彬完成签到,获得积分10
7秒前
gao发布了新的文献求助10
7秒前
8秒前
tao驳回了酷波er应助
8秒前
8秒前
小巧的寻双完成签到,获得积分10
9秒前
abin发布了新的文献求助10
10秒前
10秒前
大模型应助白菜也挺贵采纳,获得30
10秒前
自由无声完成签到,获得积分10
11秒前
彭剑封发布了新的文献求助10
11秒前
烟花应助小张爱学习采纳,获得10
11秒前
FashionBoy应助WANGCHU采纳,获得10
12秒前
12秒前
123发布了新的文献求助10
12秒前
闹闹发布了新的文献求助10
13秒前
于梦鸽关注了科研通微信公众号
13秒前
14秒前
AAA完成签到,获得积分10
14秒前
15秒前
yyh发布了新的文献求助10
15秒前
Catherine发布了新的文献求助10
16秒前
17秒前
香蕉觅云应助ddz采纳,获得30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4678157
求助须知:如何正确求助?哪些是违规求助? 4055195
关于积分的说明 12539511
捐赠科研通 3749595
什么是DOI,文献DOI怎么找? 2071077
邀请新用户注册赠送积分活动 1100067
科研通“疑难数据库(出版商)”最低求助积分说明 979567