Structural Analysis and Prediction of Hematotoxicity Using Deep Learning Approaches

计算机科学 人工智能 适用范围 集合(抽象数据类型) 机器学习 转化(遗传学) 试验装置 深度学习 数据挖掘 数量结构-活动关系 化学 生物化学 基因 程序设计语言
作者
Teng-Zhi Long,Shaohua Shi,Shao Liu,Aiping Lü,Zhaoqian Liu,Min Li,Tingjun Hou,Dongsheng Cao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (1): 111-125 被引量:23
标识
DOI:10.1021/acs.jcim.2c01088
摘要

Hematotoxicity has been becoming a serious but overlooked toxicity in drug discovery. However, only a few in silico models have been reported for the prediction of hematotoxicity. In this study, we constructed a high-quality dataset comprising 759 hematotoxic compounds and 1623 nonhematotoxic compounds and then established a series of classification models based on a combination of seven machine learning (ML) algorithms and nine molecular representations. The results based on two data partitioning strategies and applicability domain (AD) analysis illustrate that the best prediction model based on Attentive FP yielded a balanced accuracy (BA) of 72.6%, an area under the receiver operating characteristic curve (AUC) value of 76.8% for the validation set, and a BA of 69.2%, an AUC of 75.9% for the test set. In addition, compared with existing filtering rules and models, our model achieved the highest BA value of 67.5% for the external validation set. Additionally, the shapley additive explanation (SHAP) and atom heatmap approaches were utilized to discover the important features and structural fragments related to hematotoxicity, which could offer helpful tips to detect undesired positive substances. Furthermore, matched molecular pair analysis (MMPA) and representative substructure derivation technique were employed to further characterize and investigate the transformation principles and distinctive structural features of hematotoxic chemicals. We believe that the novel graph-based deep learning algorithms and insightful interpretation presented in this study can be used as a trustworthy and effective tool to assess hematotoxicity in the development of new drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
惠哲发布了新的文献求助10
刚刚
2秒前
3秒前
量子星尘发布了新的文献求助10
5秒前
每文发布了新的文献求助10
5秒前
wen发布了新的文献求助10
8秒前
8秒前
9秒前
Jeremy发布了新的文献求助10
9秒前
alile完成签到,获得积分10
9秒前
9秒前
王小美发布了新的文献求助10
11秒前
PAPA发布了新的文献求助10
11秒前
英俊的铭应助xr采纳,获得10
12秒前
12秒前
柯岩完成签到,获得积分10
12秒前
华仔应助快乐茗采纳,获得10
13秒前
白云垛发布了新的文献求助10
13秒前
小鸣完成签到 ,获得积分10
15秒前
隐形曼青应助万灵竹采纳,获得10
15秒前
NeoWu发布了新的文献求助10
17秒前
田一完成签到,获得积分10
19秒前
每文完成签到,获得积分10
20秒前
迷你的觅云完成签到,获得积分10
21秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
华仔应助白云垛采纳,获得30
24秒前
Jasper应助亦玉采纳,获得10
25秒前
26秒前
Lucky小M完成签到,获得积分10
27秒前
曾经的彩虹完成签到,获得积分10
28秒前
28秒前
CodeCraft应助Rita采纳,获得10
29秒前
ZOZO发布了新的文献求助10
30秒前
万灵竹发布了新的文献求助10
32秒前
32秒前
依小米完成签到 ,获得积分10
33秒前
十一发布了新的文献求助20
34秒前
宇宙中心发布了新的文献求助10
36秒前
量子星尘发布了新的文献求助10
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Biocontamination Control for Pharmaceuticals and Healthcare 2nd Edition 1300
Stereoelectronic Effects 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202756
求助须知:如何正确求助?哪些是违规求助? 3737404
关于积分的说明 11768221
捐赠科研通 3409591
什么是DOI,文献DOI怎么找? 1870750
邀请新用户注册赠送积分活动 926225
科研通“疑难数据库(出版商)”最低求助积分说明 836473