Deep hybrid model for single image dehazing and detail refinement

计算机科学 图像(数学) 人工智能 薄雾 残余物 深度学习 图像复原 计算机视觉 算法 图像处理 物理 气象学
作者
Nanfeng Jiang,Kejian Hu,Ting Zhang,Weiling Chen,Yiwen Xu,Tiesong Zhao
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:136: 109227-109227 被引量:33
标识
DOI:10.1016/j.patcog.2022.109227
摘要

Deep learning technologies have been applied in Single Image Dehazing (SID) tasks successfully. However, most SID algorithms seldom consider to refine image details during dehazing. Therefore, there exist some detail-loss regions in dehazed results. To solve this issue, we design a deep hybrid network to improve dehazing performance and remedy the loss of details. Different from existing algorithms that usually ignore detail refinement and adopt a unified framework to remove haze, we propose to treat dehazing and detail refinement as two separate tasks, so that each task could be solved via different ways. Particularly, we design two sub-networks with a multi-term loss function. First, for removing haze effectively, we introduce the Squeeze-and-Excitation (SE) to design a haze residual attention sub-network, which is used to reconstruct the dehazed image. Second, as for remedying details, we take the previous dehazed image as the input to a detail refinement sub-network, where the image details can be enhanced via multi-scale contextual information aggregation. Through the joint training of two sub-network, the haze can be removed clearly and the image details can be preserved well. Moreover, the detail refinement sub-network can be detached into other existing dehazing methods to improve their model performances. Extensive experiments also verify the superiority of our proposed network against recently proposed state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上以柳完成签到,获得积分10
1秒前
3秒前
成就的乘云完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
gb发布了新的文献求助10
5秒前
阿银完成签到 ,获得积分10
6秒前
gg完成签到,获得积分10
7秒前
大条关注了科研通微信公众号
8秒前
9秒前
10秒前
gg发布了新的文献求助10
11秒前
15秒前
Cheng_Y完成签到,获得积分20
15秒前
zzzz完成签到 ,获得积分10
16秒前
17秒前
19秒前
科研通AI2S应助gb采纳,获得10
19秒前
19秒前
20秒前
苹果惜梦完成签到,获得积分20
22秒前
22秒前
wanci应助桃李春风一杯酒采纳,获得10
22秒前
zzww发布了新的文献求助10
22秒前
醉还觞发布了新的文献求助10
23秒前
23秒前
24秒前
满怀发布了新的文献求助10
24秒前
Yfufu发布了新的文献求助50
24秒前
27秒前
27秒前
30秒前
FashionBoy应助小景007采纳,获得10
30秒前
32秒前
duang发布了新的文献求助10
32秒前
Xingyu_Jiang发布了新的文献求助10
35秒前
37秒前
韩军军完成签到 ,获得积分20
38秒前
cyn0762完成签到,获得积分10
38秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839884
求助须知:如何正确求助?哪些是违规求助? 3382134
关于积分的说明 10521516
捐赠科研通 3101562
什么是DOI,文献DOI怎么找? 1708143
邀请新用户注册赠送积分活动 822228
科研通“疑难数据库(出版商)”最低求助积分说明 773208