Pattern-Based Clustering of Daily Weigh-In Trajectories Using Dynamic Time Warping

动态时间归整 聚类分析 图像扭曲 计算机科学 模式识别(心理学) 人工智能
作者
Samantha Bothwell,Alexander Kaizer,Ryan Peterson,Danielle M. Ostendorf,Victoria A. Catenacci,Julia Wrobel
出处
期刊:Biometrics [Wiley]
卷期号:79 (3): 2719-2731 被引量:5
标识
DOI:10.1111/biom.13773
摘要

Abstract “Smart”-scales are a new tool for frequent monitoring of weight change as well as weigh-in behavior. These scales give researchers the opportunity to discover patterns in the frequency that individuals weigh themselves over time, and how these patterns are associated with overall weight loss. Our motivating data come from an 18-month behavioral weight loss study of 55 adults classified as overweight or obese who were instructed to weigh themselves daily. Adherence to daily weigh-in routines produces a binary times series for each subject, indicating whether a participant weighed in on a given day. To characterize weigh-in by time-invariant patterns rather than overall adherence, we propose using hierarchical clustering with dynamic time warping (DTW). We perform an extensive simulation study to evaluate the performance of DTW compared to Euclidean and Jaccard distances to recover underlying patterns in adherence time series. In addition, we compare cluster performance using cluster validation indices (CVIs) under the single, average, complete, and Ward linkages and evaluate how internal and external CVIs compare for clustering binary time series. We apply conclusions from the simulation to cluster our real data and summarize observed weigh-in patterns. Our analysis finds that the adherence trajectory pattern is significantly associated with weight loss.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助lhy采纳,获得10
1秒前
典雅的路灯完成签到,获得积分10
2秒前
别不开星发布了新的文献求助10
3秒前
3秒前
廖先生完成签到 ,获得积分10
3秒前
乌苏苏发布了新的文献求助10
4秒前
三千完成签到,获得积分10
5秒前
5秒前
英俊的铭应助黎某采纳,获得10
5秒前
Dr.Wang发布了新的文献求助10
6秒前
CT发布了新的文献求助10
6秒前
思源应助明亮画笔采纳,获得10
7秒前
完美世界应助未完采纳,获得10
7秒前
7秒前
7秒前
GUO完成签到,获得积分10
7秒前
8秒前
彩色夜阑完成签到,获得积分10
8秒前
乐乐应助神勇的半莲采纳,获得10
8秒前
Xue发布了新的文献求助10
9秒前
黄油小熊发布了新的文献求助10
9秒前
10秒前
新酱不爱吃青椒完成签到 ,获得积分10
10秒前
11秒前
斯文败类应助Sucre采纳,获得10
11秒前
vict发布了新的文献求助10
11秒前
匿名应助坏坏的快乐采纳,获得10
12秒前
麻辣老妖婆完成签到 ,获得积分10
12秒前
13秒前
13秒前
如风发布了新的文献求助10
13秒前
13秒前
13秒前
jfz发布了新的文献求助10
13秒前
13秒前
Dharma_Bums发布了新的文献求助10
13秒前
852应助Dr.Wang采纳,获得10
13秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647788
求助须知:如何正确求助?哪些是违规求助? 4774392
关于积分的说明 15041599
捐赠科研通 4806799
什么是DOI,文献DOI怎么找? 2570412
邀请新用户注册赠送积分活动 1527196
关于科研通互助平台的介绍 1486288