Machine learning-assisted investigation on the thermal transport of β-Ga2O3 with vacancy

热导率 空位缺陷 声子 非谐性 材料科学 Atom(片上系统) 凝聚态物理 声子散射 分子动力学 半导体 热的 纳米技术 化学 光电子学 计算化学 计算机科学 物理 热力学 嵌入式系统 复合材料
作者
Dong Shi-lin,Guangwu Zhang,Guangzheng Zhang,Xin Lan,Xinyu Wang,Gongming Xin
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:161 (21) 被引量:2
标识
DOI:10.1063/5.0237656
摘要

β-Ga2O3 is a promising ultra-wide bandgap semiconductor in high-power and high-frequency electronics. The low thermal conductivity of β-Ga2O3, which can be further suppressed by the intrinsic vacancy, has been a major bottleneck for improving the performance of β-Ga2O3 power devices. However, deep knowledge on the thermal transport mechanism of β-Ga2O3 with defect is still lacking now. In this work, the thermal transport of β-Ga2O3 with vacancy defects is investigated using the machine learning-assisted calculation method. First, the machine learning moment tensor potential (MTP), which can accurately describe the lattice dynamics behaviors of pristine β-Ga2O3 and solves the problem of low computational efficiency of existing computational models in β-Ga2O3 large-scale simulations, is developed for studying the thermal transport of the pristine β-Ga2O3. Then, the MTP is further developed for investigating the thermal transport of β-Ga2O3 with vacancy and the thermal conductivity of β-Ga2O3 with oxygen atom vacancies, which are evaluated by machine learning potential combined with molecular dynamics. The result shows that 0.52% oxygen atom vacancies can cause a 52.5% reduction in the thermal conductivity of β-Ga2O3 [100] direction, illustrating that thermal conductivity can be observably suppressed by vacancy. Finally, by analyzing the phonon group velocity, participation ratio, and spectral energy density, the oxygen atom vacancies in β-Ga2O3 are demonstrated to lead to a significant change in harmonic and anharmonic phonon activities. The findings of this study offer crucial insights into the thermal transport properties of β-Ga2O3 and are anticipated to contribute valuable knowledge to the thermal management of power devices based on β-Ga2O3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Samming发布了新的文献求助10
刚刚
田様应助lll采纳,获得10
1秒前
科研欢完成签到 ,获得积分10
2秒前
2秒前
2秒前
胡胜发布了新的文献求助10
3秒前
专注的问寒应助小伏采纳,获得20
3秒前
万能图书馆应助田小班采纳,获得30
3秒前
伍六柒发布了新的文献求助50
4秒前
田様应助dsds采纳,获得10
7秒前
phoenix发布了新的文献求助10
8秒前
Hello应助元谷雪采纳,获得10
8秒前
10秒前
10秒前
燕天与完成签到,获得积分20
10秒前
上官若男应助JYP采纳,获得10
11秒前
CodeCraft应助xxx采纳,获得10
11秒前
认真的长颈鹿完成签到,获得积分10
11秒前
CodeCraft应助phoenix采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
orixero应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
cc加油完成签到,获得积分10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
lll完成签到,获得积分10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
机灵柚子应助科研通管家采纳,获得10
13秒前
杨笛完成签到,获得积分10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得30
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5678698
求助须知:如何正确求助?哪些是违规求助? 4984113
关于积分的说明 15165402
捐赠科研通 4838561
什么是DOI,文献DOI怎么找? 2592550
邀请新用户注册赠送积分活动 1545839
关于科研通互助平台的介绍 1503991