CPI-Pred: A deep learning framework for predicting functional parameters of compound-protein interactions

人工智能 计算机科学 机器学习 计量经济学 数学
作者
Zhiqing Xu,Rana Ahmed Barghout,Jinghao Wu,Dhruv Garg,Yun S. Song,Radhakrishnan Mahadevan
标识
DOI:10.1101/2025.01.16.633372
摘要

Abstract Recent advancements in deep learning have enabled functional annotation of genome sequences, facilitating the discovery of new enzymes and metabolites. However, accurately predicting compound-protein interactions (CPI) from sequences remains challenging due to the complexity of these interactions and the sparsity and heterogeneity of available data, which constrain the generalization of patterns across their solution space. In this work, we introduce CPI-Pred, a versatile deep learning model designed to predict compound-protein interaction function. CPI-Pred integrates compound representations derived from a novel message-passing neural network and enzyme representations generated by state-of-the-art protein language models, leveraging innovative sequence pooling and cross-attention mechanisms. To train and evaluate CPI-Pred, we compiled the largest dataset of enzyme kinetic parameters to date, encompassing four key metrics: the Michaelis-Menten constant ( K M ), enzyme turnover number ( k cat ), catalytic efficiency ( k cat /K M ), and inhibition constant ( K I ).These kinetic parameters are critical for elucidating enzyme function in metabolic contexts and understanding their regulation by compounds within biological networks. We demonstrate that CPI-Pred can predict diverse types of CPI using only the amino acid sequence of enzymes and structural representations of compounds, outperforming state-of-the-art models on unseen compounds and structurally dissimilar enzymes. Over workflow provides a valuable tool for tackling a range of metabolic engineering challenges, including the designing of novel enzyme sequences and compounds, such as enzyme inhibitors. Additionally, the datasets curated in this study offer a valuable resource for the scientific community, serving as a benchmark for machine learning models focused on enzyme activity and promiscuity prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱科研科研爱我完成签到,获得积分10
1秒前
来来来完成签到,获得积分20
1秒前
1秒前
木木林姐姐完成签到 ,获得积分10
2秒前
殷超完成签到,获得积分10
2秒前
赫连立果应助阿九采纳,获得10
2秒前
dimples完成签到 ,获得积分10
2秒前
3秒前
Cnqaq完成签到,获得积分10
3秒前
大拿完成签到 ,获得积分10
3秒前
3秒前
哈哈完成签到,获得积分10
3秒前
果汁橡皮糖完成签到,获得积分10
4秒前
Jack完成签到,获得积分10
4秒前
于芋菊完成签到,获得积分0
4秒前
SYLH完成签到,获得积分0
4秒前
persist发布了新的文献求助10
4秒前
吕佳完成签到 ,获得积分10
4秒前
Gengar完成签到,获得积分10
5秒前
科研助手6应助迅速西装采纳,获得10
5秒前
蔫蔫发布了新的文献求助10
5秒前
果果完成签到,获得积分10
6秒前
来来来发布了新的文献求助10
6秒前
6秒前
HPP完成签到,获得积分10
7秒前
7秒前
徐rl完成签到 ,获得积分10
7秒前
Serendiply完成签到,获得积分10
7秒前
任长圭完成签到,获得积分10
8秒前
HHHH完成签到,获得积分10
8秒前
个性的涑完成签到 ,获得积分10
8秒前
9秒前
余哈哈完成签到,获得积分10
9秒前
Ava应助Gengar采纳,获得30
9秒前
9秒前
安静成威完成签到,获得积分10
10秒前
10秒前
一页完成签到,获得积分10
10秒前
南宫书瑶完成签到,获得积分10
11秒前
善学以致用应助盼盼采纳,获得10
11秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788621
求助须知:如何正确求助?哪些是违规求助? 3333855
关于积分的说明 10265174
捐赠科研通 3049972
什么是DOI,文献DOI怎么找? 1673781
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549