Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting

流量(数学) 流量(计算机网络) 计算机科学 空格(标点符号) 时空 运输工程 实时计算 工程类 数学 计算机网络 物理 几何学 量子力学 操作系统
作者
Weilin Ruan,Wenzhuo Wang,Siru Zhong,Wei Chen,Li Liu,Yuxuan Liang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2411.09251
摘要

Predicting spatio-temporal traffic flow presents significant challenges due to complex interactions between spatial and temporal factors. Existing approaches often address these dimensions in isolation, neglecting their critical interdependencies. In this paper, we introduce the Spatio-Temporal Unitized Model (STUM), a unified framework designed to capture both spatial and temporal dependencies while addressing spatio-temporal heterogeneity through techniques such as distribution alignment and feature fusion. It also ensures both predictive accuracy and computational efficiency. Central to STUM is the Adaptive Spatio-temporal Unitized Cell (ASTUC), which utilizes low-rank matrices to seamlessly store, update, and interact with space, time, as well as their correlations. Our framework is also modular, allowing it to integrate with various spatio-temporal graph neural networks through components such as backbone models, feature extractors, residual fusion blocks, and predictive modules to collectively enhance forecasting outcomes. Experimental results across multiple real-world datasets demonstrate that STUM consistently improves prediction performance with minimal computational cost. These findings are further supported by hyperparameter optimization, pre-training analysis, and result visualization. We provide our source code for reproducibility at https://anonymous.4open.science/r/STUM-E4F0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玲玲玲完成签到,获得积分10
2秒前
李哲发布了新的文献求助10
3秒前
深情安青应助白冷之采纳,获得30
3秒前
我是老大应助TANGTANG采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
粗心的绾绾应助LaTeXer采纳,获得10
7秒前
DW发布了新的文献求助10
9秒前
zyc发布了新的文献求助10
10秒前
cheyy发布了新的文献求助10
10秒前
13秒前
四硼酸钠完成签到,获得积分10
13秒前
LaTeXer重新开启了Wang123文献应助
14秒前
sunnn完成签到 ,获得积分10
14秒前
zyc完成签到,获得积分20
14秒前
15秒前
16秒前
17秒前
TANGTANG发布了新的文献求助10
17秒前
17秒前
zxy完成签到,获得积分10
19秒前
可爱的函函应助Master采纳,获得10
19秒前
19秒前
啊福发布了新的文献求助10
21秒前
一一应助白桃采纳,获得10
21秒前
成事在人307完成签到,获得积分10
21秒前
咕咕发布了新的文献求助10
21秒前
23秒前
shan发布了新的文献求助10
23秒前
申申完成签到,获得积分10
24秒前
24秒前
一串数字应助吹吹采纳,获得10
24秒前
工厂化养殖拟穴青蟹完成签到,获得积分10
26秒前
27秒前
汉堡包应助sweet采纳,获得10
28秒前
28秒前
默默雨竹完成签到,获得积分20
28秒前
饱满的箴完成签到 ,获得积分10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358942
关于积分的说明 10398332
捐赠科研通 3076344
什么是DOI,文献DOI怎么找? 1689769
邀请新用户注册赠送积分活动 813254
科研通“疑难数据库(出版商)”最低求助积分说明 767599