A novel self-adaptive multivariate grey model with external intervention for port cargo throughput prediction

多元统计 吞吐量 端口(电路理论) 计算机科学 机器学习 工程类 电信 无线 电气工程
作者
Xuemei Li,Yuyu Sun,Yansong Shi,Yufeng Zhao,Shiwei Zhou
出处
期刊:Grey systems [Emerald Publishing Limited]
被引量:1
标识
DOI:10.1108/gs-08-2024-0104
摘要

Purpose Accurate prediction of port cargo throughput within Free Trade Zones (FTZs) can optimize resource allocation, reduce environmental pollution, enhance economic benefits and promote sustainable transportation development. Design/methodology/approach This paper introduces a novel self-adaptive grey multivariate prediction modeling framework (FARDCGM(1,N)) to forecast port cargo throughput in China, addressing the challenges posed by mutations and time lag characteristics of time series data. The model explores policy-driven mechanisms and autoregressive time lag terms, incorporating policy dummy variables to capture deviations in system development trends. The inclusion of autoregressive time lag terms enhances the model’s ability to describe the evolving system complexity. Additionally, the fractional-order accumulative generation operation effectively captures data features, while the Grey Wolf Optimization algorithm determines optimal nonlinear parameters, enhancing the model’s robustness. Findings Verification using port cargo throughput forecasts for FTZs in Shanghai, Guangdong and Zhejiang provinces demonstrates the FARDCGM(1,N) model’s remarkable accuracy and stability. This innovative model proves to be an excellent forecasting tool for systematically analyzing port cargo throughput under external interventions and time lag effects. Originality/value A novel self-adaptive grey multivariate modeling framework, FARDCGM(1,N), is introduced for accurately predicting port cargo throughput, considering policy-driven impacts and autoregressive time-lag effects. The model incorporates the GWO algorithm for optimal parameter selection, enhancing adaptability to sudden changes. It explores the dual role of policy variables in influencing system trends and the impact of time lag on dynamic response rates, improving the model’s complexity handling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
4秒前
7秒前
8秒前
9秒前
章不胖发布了新的文献求助10
11秒前
王小树完成签到,获得积分10
13秒前
MiffyJia发布了新的文献求助50
14秒前
15秒前
15秒前
15秒前
18秒前
19秒前
mcqm完成签到,获得积分10
19秒前
平安喜乐发布了新的文献求助10
20秒前
21秒前
eeeee发布了新的文献求助10
21秒前
含蓄可冥发布了新的文献求助10
22秒前
SciGPT应助俭朴的芝麻采纳,获得30
22秒前
章不胖完成签到,获得积分10
22秒前
8R60d8应助kingwill采纳,获得20
23秒前
24秒前
danlionchy发布了新的文献求助10
24秒前
8R60d8应助jiang1998采纳,获得80
25秒前
8R60d8应助jiang1998采纳,获得10
25秒前
25秒前
天天快乐应助小榕采纳,获得10
26秒前
yexing发布了新的文献求助10
28秒前
甜蜜的傲蕾完成签到,获得积分10
28秒前
赘婿应助平安喜乐采纳,获得10
28秒前
29秒前
万能图书馆应助庞伟泽采纳,获得10
30秒前
34秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
欢呼的晓博完成签到,获得积分20
35秒前
科研通AI5应助闪闪的梦柏采纳,获得50
37秒前
yjf完成签到 ,获得积分10
38秒前
39秒前
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4214244
求助须知:如何正确求助?哪些是违规求助? 3748545
关于积分的说明 11792549
捐赠科研通 3415108
什么是DOI,文献DOI怎么找? 1874130
邀请新用户注册赠送积分活动 928348
科研通“疑难数据库(出版商)”最低求助积分说明 837610