亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-Domain Mutual-Assistance Learning Framework for Fully Automated Diagnosis of Primary Tumor in Nasopharyngeal Carcinoma

鼻咽癌 机器学习 卷积神经网络 相互信息 领域(数学分析) 计算机科学 人工智能 深度学习 医学 放射治疗 数学 数学分析 内科学
作者
Xiuyu Dong,Kaifan Yang,Jinyu Liu,Fan Tang,Wenjun Liao,Yu Zhang,Shujun Liang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (11): 3676-3689 被引量:2
标识
DOI:10.1109/tmi.2024.3400406
摘要

Accurate T-staging of nasopharyngeal carcinoma (NPC) holds paramount importance in guiding treatment decisions and prognosticating outcomes for distinct risk groups. Regrettably, the landscape of deep learning-based techniques for T-staging in NPC remains sparse, and existing methodologies often exhibit suboptimal performance due to their neglect of crucial domain-specific knowledge pertinent to primary tumor diagnosis. To address these issues, we propose a new cross-domain mutual-assistance learning framework for fully automated diagnosis of primary tumor using H&N MR images. Specifically, we tackle primary tumor diagnosis task with the convolutional neural network consisting of a 3D cross-domain knowledge perception network (CKP net) for excavated cross-domain-invariant features emphasizing tumor intensity variations and internal tumor heterogeneity, and a multi-domain mutual-information sharing fusion network (M2SF net), comprising a dual-pathway domain-specific representation module and a mutual information fusion module, for intelligently gauging and amalgamating multi-domain, multi-scale T-stage diagnosis-oriented features. The proposed 3D cross-domain mutual-assistance learning framework not only embraces task-specific multi-domain diagnostic knowledge but also automates the entire process of primary tumor diagnosis. We evaluate our model on an internal and an external MR images dataset in a three-fold cross-validation paradigm. Exhaustive experimental results demonstrate that our method outperforms the state-of-the-art algorithms, and obtains promising performance for tumor segmentation and T-staging. These findings underscore its potential for clinical application, offering valuable assistance to clinicians in treatment decision-making and prognostication for various risk groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助ysss0831采纳,获得10
15秒前
踏实乌冬面完成签到,获得积分10
21秒前
28秒前
33秒前
lin发布了新的文献求助10
34秒前
遍空应助科研通管家采纳,获得10
36秒前
归尘应助科研通管家采纳,获得30
36秒前
36秒前
ysss0831发布了新的文献求助10
37秒前
lin完成签到,获得积分10
37秒前
47秒前
54秒前
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
2分钟前
慕青应助陆上飞采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
唐泽雪穗发布了新的文献求助40
3分钟前
3分钟前
今后应助Wei采纳,获得10
3分钟前
科研通AI5应助Ballyhooed采纳,获得10
3分钟前
3分钟前
科研通AI5应助HS采纳,获得10
3分钟前
clover完成签到,获得积分10
4分钟前
嗯嗯嗯完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Wei发布了新的文献求助50
4分钟前
4分钟前
5分钟前
小蘑菇应助酷酷李可爱婕采纳,获得10
5分钟前
时否十七完成签到,获得积分10
5分钟前
110o发布了新的文献求助10
5分钟前
NexusExplorer应助饱满羽毛采纳,获得10
5分钟前
李李原上草完成签到 ,获得积分0
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682068
求助须知:如何正确求助?哪些是违规求助? 4057710
关于积分的说明 12545356
捐赠科研通 3753017
什么是DOI,文献DOI怎么找? 2072733
邀请新用户注册赠送积分活动 1101828
科研通“疑难数据库(出版商)”最低求助积分说明 981119