Boosting Electrochemical Ammonia Synthesis via NOx Reduction over Sulfur‐Doped Copper Oxide Nanoneedle Arrays

纳米针 材料科学 Boosting(机器学习) 电化学 兴奋剂 硫黄 氧化物 无机化学 氨生产 氧化铜 纳米颗粒 纳米技术 冶金 电极 光电子学 纳米结构 化学 有机化学 物理化学 机器学习 计算机科学
作者
Tai-Song Zhang,Jiangnan Lv,Ruixia Yang,Zhi Yan,Xiaoting Sun,Xiaohong Xu,Yang Liu
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (30) 被引量:23
标识
DOI:10.1002/aenm.202400790
摘要

Abstract The electrochemical NO x reduction reactions, involving nitrate and nitrite reduction reactions (NO 3 − RR and NO 2 − RR), have emerged as promising approaches for both NO 3 − and NO 2 − removal, and ammonium (NH 3 ) synthesis under ambient conditions. However, the incorporation and stabilization of sulfur dopants in the catalysts for efficient NO x reduction are rarely explored, leading to an unclear effect of sulfur on the NO x reduction mechanism. Herein, sulfur‐doped Cu 2 O (S‐Cu 2 O) nanoneedle arrays via in situ electrochemical treatment are synthesized. The S‐Cu 2 O catalyst possesses excellent durability and selectivity for NH 3 over a wide range of potentials in NO 3 − RR, attaining a maximum NH 3 Faradaic efficiency of 94% at −0.6 V RHE and a maximum NH 3 yield as high as 1.06 mmol h −1 cm −2 . In NO 3 − RR, the sulfur dopant can accelerate the step from NO 2 − to NH 3 , contributing superior performance in NO 2 − RR and assembled Zn−NO 2 − battery device. Density functional theory (DFT) calculations reveal that the presence of sulfur can enhance the initial step of *NO 3 adsorption, lower the reaction barriers for the formation of *NHO intermediate, and activate the H 2 O dissociation process. The work sheds light on the role of sulfur in enhancing electrocatalytic performance and provides a unique perspective for understanding the NO x reduction mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
若什么至完成签到,获得积分10
刚刚
DJ_Tokyo完成签到,获得积分10
刚刚
1秒前
情怀应助kkk采纳,获得10
1秒前
超zc完成签到,获得积分10
2秒前
erhan7完成签到,获得积分10
2秒前
3秒前
一生正气娜娜米完成签到,获得积分10
3秒前
3秒前
Okpooko发布了新的文献求助10
4秒前
外向的冰棍完成签到,获得积分10
4秒前
zgdzhj发布了新的文献求助10
5秒前
tt完成签到,获得积分20
7秒前
lihaha完成签到 ,获得积分10
7秒前
Zzz完成签到,获得积分10
7秒前
8秒前
dahong完成签到 ,获得积分10
10秒前
动听凌柏发布了新的文献求助10
10秒前
NexusExplorer应助想杀鸡采纳,获得10
11秒前
11秒前
11秒前
tt发布了新的文献求助10
12秒前
兰先生发布了新的文献求助10
12秒前
zgdzhj完成签到,获得积分10
12秒前
温伊完成签到,获得积分10
12秒前
13秒前
斜玉完成签到,获得积分10
13秒前
13秒前
13秒前
一独白发布了新的文献求助30
13秒前
木子小样完成签到,获得积分10
14秒前
斯文败类应助Cc采纳,获得10
16秒前
龙科完成签到,获得积分10
16秒前
kelaibing完成签到,获得积分10
16秒前
白云发布了新的文献求助10
16秒前
JokerLove发布了新的文献求助10
16秒前
16秒前
17秒前
大罗完成签到 ,获得积分10
17秒前
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213148
求助须知:如何正确求助?哪些是违规求助? 4389063
关于积分的说明 13665899
捐赠科研通 4250024
什么是DOI,文献DOI怎么找? 2331888
邀请新用户注册赠送积分活动 1329543
关于科研通互助平台的介绍 1283086