Preparation and overall water-splitting performance study of amorphous nickel-copper-phosphide

磷化物 无定形固体 材料科学 冶金 化学 结晶学
作者
Wenjing Hou,Cai Zhou,Qijun Li,Hongqi Zhou,Zhiyu Liu,Lanjun Yang,Chun Wu,Hewei Zhao,Shizhi Dong
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:1002: 175314-175314
标识
DOI:10.1016/j.jallcom.2024.175314
摘要

Hydrogen energy is one of the most important vehicles for energy development in China. One of the effective hydrogen production pathways is overall water-splitting, which is considered as one of the most promising technologies for large-scale hydrogen production. However, its stability, activity, and selectivity still need to be improved. Therefore, in this article, amorphous nickel-copper phosphide was prepared by solvothermal method. Increasing the concentration of ethylene glycol in the solvent makes the solution viscosity increase, which inhibits the nucleation process of the crystal and causes structural distortion, leading to complete amorphization of the nickel-copper phosphide. After the analysis of physical phase and electrocatalytic properties, it can be concluded that the performance of the catalyst is optimal when completely amorphous. When the current density is 10 mA·cm-2, the overpotential of HER and OER are 140.5 and 232.65 mV respectively, and the overall water-splitting overpotential is 1.6404 V. Theoretical calculations indicate that the amorphous phase can optimize the electronic structure, thereby endowing the catalyst with excellent overall water-splitting catalytic activity and stability. This article demonstrates that the formation of an amorphous phase increases the number of active sites on the catalyst, enhancing its catalytic activity, and provides an explanation for the mechanism behind the catalytic performance. This research provides a theoretical foundation for the development of hydrogen production through electrochemical water splitting and expands the design strategies for catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬完成签到,获得积分10
1秒前
lmq完成签到 ,获得积分10
1秒前
舒心的青槐完成签到 ,获得积分10
3秒前
calphen完成签到 ,获得积分10
4秒前
CodeCraft应助Ab采纳,获得30
5秒前
const完成签到,获得积分10
10秒前
王妍完成签到 ,获得积分10
11秒前
卡卡啊发布了新的文献求助10
12秒前
13秒前
蟹老板完成签到,获得积分10
15秒前
zz完成签到,获得积分10
16秒前
17秒前
339564965完成签到,获得积分10
17秒前
自来也完成签到,获得积分10
17秒前
那一片海发布了新的文献求助10
17秒前
ccc完成签到,获得积分10
18秒前
只想顺利毕业的科研狗完成签到,获得积分10
19秒前
崔城完成签到,获得积分10
19秒前
yk完成签到 ,获得积分10
21秒前
研友_ZA2B68完成签到,获得积分10
21秒前
Ab发布了新的文献求助30
22秒前
zhl完成签到,获得积分10
24秒前
桥豆麻袋完成签到,获得积分10
26秒前
xueshidaheng完成签到,获得积分0
27秒前
chenkj完成签到,获得积分10
28秒前
EricSai完成签到,获得积分10
28秒前
ikun完成签到,获得积分10
28秒前
陈老太完成签到 ,获得积分10
28秒前
风信子完成签到,获得积分10
29秒前
Helios完成签到,获得积分10
29秒前
执着的书蝶完成签到,获得积分10
30秒前
Ccccn完成签到,获得积分10
30秒前
飞龙在天完成签到,获得积分0
30秒前
茅十八完成签到,获得积分10
30秒前
BK_201完成签到,获得积分10
30秒前
nanostu完成签到,获得积分10
31秒前
abiorz完成签到,获得积分0
31秒前
木康薛完成签到,获得积分10
32秒前
窗外是蔚蓝色完成签到,获得积分0
32秒前
Brief完成签到,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782730
求助须知:如何正确求助?哪些是违规求助? 3328104
关于积分的说明 10234508
捐赠科研通 3043130
什么是DOI,文献DOI怎么找? 1670450
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 758994