Development of organic aggregation-induced emission fluorescent materials based on machine learning models and experimental validation

化学 聚集诱导发射 荧光 纳米技术 生物系统 材料科学 物理 量子力学 生物
作者
Yihuan Zhao,Kuan Chen,Binhai Yu,Qianwen Wan,You Wang,Fushan Tang,Xinmin Li
出处
期刊:Journal of Molecular Structure [Elsevier BV]
卷期号:1317: 139126-139126 被引量:1
标识
DOI:10.1016/j.molstruc.2024.139126
摘要

Organic fluorescent materials have attracted significant attention due to their unique chemical and optoelectronic properties. Unfortunately, traditional organic fluorescent materials are limited by aggregation-caused quenching (ACQ), which restricts their application potential in various fields. The discovery of aggregation-induced emission (AIE) materials has revolutionized the field by providing a solution to this issue. Despite considerable efforts to design and synthesize novel AIE materials, the development process still relies on tedious trial-and-error methods. Therefore, advanced cross-disciplinary techniques must be introduced to establish AIE property prediction models and enhance the development efficiency of organic AIE fluorescent materials. Machine learning (ML) is a powerful tool that has been widely applied across diverse fields to accelerate material development through complex relationship mapping of large data sets. This study presents an ML-based approach aimed at accelerating the development of organic AIE fluorescent materials. We assembled a dataset of 3,074 molecules with AIE/ACQ properties, developed a prediction model using the LightGBM ensemble learning algorithm, and used combined molecular fingerprints as input. The model achieved a remarkable independent test-set accuracy of up to 0.974 and its extrapolation ability was validated by out-of-sample validation (accuracy = 0.963). In addition, experimental validation was performed to assess the reliability of the ML prediction model in an unknown molecular space, showing a satisfactory agreement between the model predictions and the experimental results. Our work highlights the potential of ML for rapidly and accurately predicting the AIE property of unknown molecules and screening AIE materials, thereby accelerating the development of organic AIE fluorescent materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助陈可欣采纳,获得10
1秒前
4秒前
莱贝特发布了新的文献求助10
4秒前
4秒前
打打应助CHB只争朝夕采纳,获得10
6秒前
cryjslong完成签到,获得积分10
6秒前
6秒前
赘婿应助留胡子的之云采纳,获得10
6秒前
堂风发布了新的文献求助30
6秒前
王子完成签到,获得积分10
10秒前
kyt完成签到,获得积分10
11秒前
exosome发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
13秒前
陈鹿华完成签到 ,获得积分10
15秒前
852应助Guoqiang采纳,获得10
15秒前
Helium发布了新的文献求助10
17秒前
wanci应助Ivy采纳,获得10
18秒前
ppp发布了新的文献求助10
18秒前
浮云发布了新的文献求助10
18秒前
18秒前
Akim应助Jun采纳,获得10
20秒前
21秒前
SciGPT应助迅速的八宝粥采纳,获得10
22秒前
大模型应助小云采纳,获得10
23秒前
23秒前
qin123发布了新的文献求助10
26秒前
llg发布了新的文献求助10
26秒前
ppp完成签到,获得积分20
27秒前
高大美发布了新的文献求助10
29秒前
wangli发布了新的文献求助10
31秒前
32秒前
杰桑的西地那非完成签到 ,获得积分10
34秒前
36秒前
guyan完成签到,获得积分10
36秒前
鸡脖侠完成签到,获得积分10
37秒前
高大美完成签到,获得积分20
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669