Brain metastases from NSCLC treated with stereotactic radiotherapy: prediction mismatch between two different radiomic platforms

无线电技术 磁共振成像 医学 Lasso(编程语言) 放射外科 一致性 放射治疗 计算机科学 放射科 内科学 万维网
作者
Gianluca Carloni,Cristina Garibaldi,Giulia Marvaso,Stefania Volpe,Mattia Zaffaroni,Matteo Pepa,Lars Johannes Isaksson,Francesca Colombo,Stefano Durante,Giuliana Lo Presti,Sara Raimondi,Lorenzo Spaggiari,Filippo de Marinis,Gaia Piperno,S. Vigorito,Sara Gandini,Marta Cremonesi,Vincenzo Positano,Barbara Alicja Jereczek‐Fossa
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:178: 109424-109424 被引量:8
标识
DOI:10.1016/j.radonc.2022.11.013
摘要

Radiomics enables the mining of quantitative features from medical images. The influence of the radiomic feature extraction software on the final performance of models is still a poorly understood topic. This study aimed to investigate the ability of radiomic features extracted by two different radiomic platforms to predict clinical outcomes in patients treated with radiosurgery for brain metastases from non-small cell lung cancer. We developed models integrating pre-treatment magnetic resonance imaging (MRI)-derived radiomic features and clinical data.Pre-radiotherapy gadolinium enhanced axial T1-weighted MRI scans were used. MRI images were re-sampled, intensity-shifted, and histogram-matched before radiomic extraction by means of two different platforms (PyRadiomics and SOPHiA Radiomics). We adopted LASSO Cox regression models for multivariable analyses by creating radiomic, clinical, and combined models using three survival clinical endpoints (local control, distant progression, and overall survival). The statistical analysis was repeated 50 times with different random seeds and the median concordance index was used as performance metric of the models.We analysed 276 metastases from 148 patients. The use of the two platforms resulted in differences in both the quality and the number of extractable features. That led to mismatches in terms of end-to-end performance, statistical significance of radiomic scores, and clinical covariates found significant in combined models.This study shed new light on how extracting radiomic features from the same images using two different platforms could yield several discrepancies. That may lead to acute consequences on drawing conclusions, comparing results across the literature, and translating radiomics into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情灯泡发布了新的文献求助10
刚刚
刚刚
1秒前
anthonykk发布了新的文献求助10
3秒前
遗迹小白完成签到,获得积分10
4秒前
4秒前
阳光的一应助renshiq采纳,获得10
4秒前
在水一方应助论英雄采纳,获得30
5秒前
英姑应助斯文明杰采纳,获得10
5秒前
chunlei发布了新的文献求助10
7秒前
英姑应助无情灯泡采纳,获得10
7秒前
十十完成签到,获得积分10
8秒前
夹心饼干发布了新的文献求助10
9秒前
骆弟涛发布了新的文献求助10
9秒前
和谐小松鼠关注了科研通微信公众号
10秒前
SunSun完成签到 ,获得积分10
11秒前
热心市民小红花应助Zhang采纳,获得10
12秒前
13秒前
香蕉觅云应助曾哥帅采纳,获得10
14秒前
传奇3应助momo采纳,获得10
14秒前
无花果应助Shinewei采纳,获得10
15秒前
无情灯泡完成签到,获得积分10
15秒前
15秒前
16秒前
meng完成签到,获得积分10
17秒前
chun完成签到 ,获得积分10
17秒前
18秒前
万能图书馆应助水上书采纳,获得10
18秒前
unicorn发布了新的文献求助10
19秒前
斯文明杰发布了新的文献求助10
20秒前
夹心饼干完成签到,获得积分10
21秒前
sunny发布了新的文献求助10
21秒前
21秒前
柒z发布了新的文献求助10
21秒前
阿欢完成签到 ,获得积分10
22秒前
孙季沅完成签到,获得积分10
24秒前
24秒前
潇洒莞发布了新的文献求助20
24秒前
24秒前
26秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
Magnum Contact Sheets 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897202
求助须知:如何正确求助?哪些是违规求助? 3441089
关于积分的说明 10820012
捐赠科研通 3166066
什么是DOI,文献DOI怎么找? 1749173
邀请新用户注册赠送积分活动 845156
科研通“疑难数据库(出版商)”最低求助积分说明 788443