BIM-based indoor mobile robot initialization for construction automation using object detection

初始化 移动机器人 机器人 计算机科学 人工智能 瓶颈 卷积神经网络 移动机器人导航 计算机视觉 对象(语法) 目标检测 实时计算 机器人控制 嵌入式系统 模式识别(心理学) 程序设计语言
作者
Xinge Zhao,Chien Chern Cheah
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:146: 104647-104647 被引量:3
标识
DOI:10.1016/j.autcon.2022.104647
摘要

In recent years, there has been increasing interest in robotic solutions to revolutionize the conventional construction industry. Despite various advances in developing mobile robotic solutions for construction automation. One key bottleneck towards a fully automated robotic solution in construction is the initialization of the mobile robot. Currently, most of the commercialized mobile construction robots are manually initialized before autonomous navigation can be performed at the construction sites for automated tasks. Even if the robot is initialized, the location information can be lost while navigating and re-initialization is required to resume the navigation. Any wrong initialization can cause failure in robot pose tracking and thus prevent the robot from performing the planned tasks. However, in indoor construction sites, GPS is not accessible, and indoor infrastructures, such as beacon devices are not available for robot initialization. In addition, construction environments are dynamic with significant change in scenes and structures for different construction blocks and floors, making pre-scanning of the environments and map matching difficult and time-consuming. An infrastructure-free and environment-independent robot initialization method is therefore required. In this paper, we propose an integrated Building Information Model (BIM)-based indoor robot initialization system using an object detector to automatically initialize the mobile robot when it is deployed at an unknown location. Convolutional neural network (CNN)-based object detection technique is used to detect and locate the visual features, which are widely distributed building components at construction sites. A feature matching algorithm is developed to correlate the acquired online information of detected features with geometric and semantic information retrieved from BIM. The robot location in the BIM coordinate frame is then estimated based on the feature association. Moreover, the proposed system aggregates the BIM information and the sensory information to supervise the online robot decision making, making the entire system fully automatic. The proposed system is validated through experiments in various environments including a university building and ongoing construction sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小葫芦完成签到 ,获得积分10
2秒前
白色的风车完成签到,获得积分10
3秒前
呀呀呀呀发布了新的文献求助10
3秒前
爆米花应助lucinda采纳,获得10
5秒前
6秒前
夏天发布了新的文献求助10
6秒前
Snoopy完成签到,获得积分10
7秒前
传奇3应助包容的小鸽子采纳,获得10
7秒前
9秒前
达夫斯基完成签到,获得积分10
10秒前
搜集达人应助加油努力采纳,获得10
11秒前
内向的火车完成签到 ,获得积分10
12秒前
tianxiong完成签到 ,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
16秒前
缥缈宛凝发布了新的文献求助10
16秒前
erinywy完成签到,获得积分20
17秒前
Owen应助冷静短靴采纳,获得10
17秒前
窦虫发布了新的文献求助10
18秒前
深情安青应助jing采纳,获得10
20秒前
21秒前
小二郎应助chensiqi采纳,获得10
24秒前
24秒前
24秒前
25秒前
marxing发布了新的文献求助10
26秒前
加油努力发布了新的文献求助10
27秒前
28秒前
29秒前
蚂蚁踢大象完成签到 ,获得积分10
30秒前
31秒前
31秒前
包容的小鸽子完成签到 ,获得积分10
32秒前
陈柯洁发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
33秒前
动听的续完成签到,获得积分10
34秒前
jing发布了新的文献求助10
34秒前
34秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
求助→丁香园·用药助手2025版《临床决策疾病100问》的全套电子版PDF 1000
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874927
求助须知:如何正确求助?哪些是违规求助? 3417338
关于积分的说明 10703162
捐赠科研通 3141706
什么是DOI,文献DOI怎么找? 1733501
邀请新用户注册赠送积分活动 836086
科研通“疑难数据库(出版商)”最低求助积分说明 782355