The Impact of Verbal and Visual Content on Consumer Engagement in Social Media Marketing

内容(测量理论) 广告 社会化媒体 媒体内容 营销 业务 心理学 计算机科学 多媒体 数学 数学分析 万维网
作者
Lei Liu,Yingfei Wang,Zhen Fang,Shaohui Wu
出处
期刊:Production and Operations Management [Wiley]
卷期号:34 (11): 3416-3437 被引量:1
标识
DOI:10.1177/10591478251349892
摘要

Social media marketing has been relentlessly developed and integrated into firm operations. On social media platforms, firms rely on a combination of verbal and visual elements to communicate with consumers and attract their attention. The present research investigates how the semantic relationship between text and image information affects consumer engagement (forwards and comments). Leveraging a large-scale dataset of firm-generated messages, we use deep learning, large language models, and topic models to quantify each text–image message with a theorized two-dimensional text–image incongruency (relevancy and expectancy). Relevancy is how closely the information aligns with the main message. Expectancy is how predictable or surprising the information is based on what people expect, which concerns long-term affective and cognitive memories about one's past and present experiences. We find that the interaction of relevancy and expectancy, two distinct dimensions at the cognitive level, is a crucial antecedent of consumer engagement on social media. High-relevancy–high-expectancy (HRHE) content and low-relevancy–low-expectancy (LRLE) content are the most effective strategies, whereas high-relevancy–low-expectancy (HRLE) and low-relevancy–high-expectancy (LRHE) contents do not work so well. Furthermore, this paper also uncovers the distinct nature of consumer engagement forms in social media settings, including forwards and comments. In particular, HRHE offers the exclusive benefit of boosting forwards while the two strategies are equally effective in eliciting comments. This research derives several important operational implications of consumer engagement and social media marketing by addressing the importance of multi-dimensional text–image incongruency and contributes to the literature on operations management and marketing interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周正发布了新的文献求助30
刚刚
贪玩笑容完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
紫色奶萨完成签到,获得积分10
1秒前
1秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
爱听歌的悒完成签到,获得积分10
4秒前
4秒前
5秒前
隐形曼青应助可可采纳,获得10
5秒前
SciGPT应助松松松采纳,获得10
5秒前
Ppao7ii完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
CodeCraft应助不安雪一采纳,获得10
6秒前
才染发布了新的文献求助10
7秒前
依古比古发布了新的文献求助10
7秒前
7秒前
MET1发布了新的文献求助10
8秒前
8秒前
xxcccc发布了新的文献求助10
9秒前
9秒前
无极微光应助小怪采纳,获得20
10秒前
才染发布了新的文献求助10
10秒前
Erste完成签到 ,获得积分10
10秒前
逍遥游发布了新的文献求助10
11秒前
11秒前
11秒前
ding应助NeoWu采纳,获得10
13秒前
爆米花应助Larry1226采纳,获得10
13秒前
研友_VZG7GZ应助窖藏喜之郎采纳,获得10
13秒前
13秒前
14秒前
14秒前
我是老大应助yao chen采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730174
求助须知:如何正确求助?哪些是违规求助? 5321976
关于积分的说明 15318160
捐赠科研通 4876827
什么是DOI,文献DOI怎么找? 2619662
邀请新用户注册赠送积分活动 1569070
关于科研通互助平台的介绍 1525722