EXPRESS: The Impact of Verbal and Visual Content on Consumer Engagement in Social Media Marketing

内容(测量理论) 广告 社会化媒体 媒体内容 营销 业务 心理学 计算机科学 多媒体 数学 数学分析 万维网
作者
Lei Liu,Yingfei Wang,Fang Zhen,Shaohui Wu
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478251349892
摘要

Social media marketing has been relentlessly developed and integrated into firm operations. On social media platforms, firms rely on a combination of verbal and visual elements to communicate with consumers and attract their attention. The present research investigates how the semantic relationship between text and image information affects consumer engagement (forwards and comments). Leveraging a large-scale dataset of firm-generated messages, we use deep learning, LLM, and topic models to quantify each text-image message with a theorized two-dimensional text-image incongruency (relevancy and expectancy). Relevancy is how closely the information aligns with the main message. Expectancy is how predictable or surprising the information is based on what people expect, which concerns long-term affective and cognitive memories about one’s past and present experiences. We find that the interaction of relevancy and expectancy, two distinct dimensions at the cognitive level, is a crucial antecedent of consumer engagement on social media. High-relevancy-high-expectancy (HRHE) content and low-relevancy-low-expectancy (LRLE) content are the most effective strategies, whereas high-relevancy-low-expectancy (HRLE) and low-relevancy-high-expectancy (LRHE) contents do not work so well. Furthermore, this paper also uncovers the distinct nature of consumer engagement forms in social media settings, including forwards and comments. In particular, HRHE offers an exclusive benefit of boosting forwards while the two strategies are equally effective in eliciting comments. This research derives several important operational implications of consumer engagement and social media marketing by addressing the importance of multi-dimensional text-image incongruency and contributes to the literature on operations management and marketing interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助慕容羊青采纳,获得10
刚刚
刚刚
Wtony完成签到 ,获得积分10
1秒前
1秒前
李健应助赵小麦采纳,获得10
1秒前
踏实秋莲完成签到,获得积分10
1秒前
科研通AI2S应助万颖婷采纳,获得10
2秒前
柒柒_BX发布了新的文献求助10
2秒前
666发布了新的文献求助10
2秒前
2秒前
小宝发布了新的文献求助10
2秒前
SKJ完成签到,获得积分20
2秒前
搜集达人应助丫丫采纳,获得10
3秒前
qh5706发布了新的文献求助10
3秒前
开放穆发布了新的文献求助10
3秒前
demo发布了新的文献求助30
3秒前
z不停发布了新的文献求助200
4秒前
李星云完成签到,获得积分20
4秒前
Accept2024发布了新的文献求助10
5秒前
sadascaqwqw发布了新的文献求助10
5秒前
深情安青应助哈哈采纳,获得10
5秒前
6秒前
7秒前
throb完成签到,获得积分10
7秒前
机智向松发布了新的文献求助10
7秒前
SKJ发布了新的文献求助30
7秒前
honghu完成签到,获得积分20
7秒前
8秒前
罗伊黄发布了新的文献求助10
8秒前
bfbdfbdf应助欢喜的妙芙采纳,获得10
9秒前
9秒前
CipherSage应助坚定的松鼠采纳,获得10
10秒前
gc发布了新的文献求助10
11秒前
晚风完成签到,获得积分10
12秒前
12秒前
13秒前
李星云关注了科研通微信公众号
13秒前
throb发布了新的文献求助10
14秒前
14秒前
饕餮发布了新的文献求助10
14秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
ACSM's guidelines for exercise testing and prescription, 12 ed 500
The Well-Connected Animal 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896345
求助须知:如何正确求助?哪些是违规求助? 3440164
关于积分的说明 10816202
捐赠科研通 3165147
什么是DOI,文献DOI怎么找? 1748573
邀请新用户注册赠送积分活动 844771
科研通“疑难数据库(出版商)”最低求助积分说明 788224