Machine learning algorithms integrating positron emission tomography/computed tomography features to predict pathological complete response after neoadjuvant chemoimmunotherapy in lung cancer

化学免疫疗法 正电子发射断层摄影术 肺癌 计算机断层摄影术 医学 病态的 算法 断层摄影术 放射科 核医学 癌症 计算机科学 肿瘤科 病理 内科学 免疫疗法
作者
Zhenxin Sheng,Shuyu Ji,Yancheng Chen,Zhifu Mi,Huansha Yu,Lele Zhang,Shiyue Wan,Nan Song,Ziyun Shen,Peng Zhang
出处
期刊:European Journal of Cardio-Thoracic Surgery [Oxford University Press]
标识
DOI:10.1093/ejcts/ezaf132
摘要

Abstract OBJECTIVES Reliable methods for predicting pathological complete response (pCR) in non-small cell lung cancer (NSCLC) patients undergoing neoadjuvant chemoimmunotherapy are still under exploration. Although Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG PET/CT) features reflect tumour response, their utility in predicting pCR remains controversial. METHODS This retrospective analysis included NSCLC patients who received neoadjuvant chemoimmunotherapy followed by 18F-FDG PET/CT imaging at Shanghai Pulmonary Hospital from October 2019 to August 2024. Eligible patients were randomly divided into training and validation cohort at a 7:3 ratio. Relevant 18F-FDG PET/CT features were evaluated as individual predictors and incorporated into five machine learning (ML) models. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), and Shapley additive explanation (SHAP) was applied for model interpretation. RESULTS A total of 205 patients were included, with 91 (44.4%) achieving pCR. Post-treatment tumour maximum standardized uptake value (SUVmax) demonstrated the highest predictive performance among individual predictors, achieving an AUC of 0.72 (95% CI: 0.65—0.79), while ΔT SUVmax achieved an AUC of 0.65 (95% CI: 0.53—0.77). The Light Gradient Boosting Machine (LightGBM) algorithm outperformed other models and individual predictors, achieving an average AUC of 0.87 (95% CI: 0.78—0.97) in training cohort and 0.83 (95% CI: 0.72—0.94) in validation cohort. SHAP analysis identified post-treatment tumour SUVmax and post-treatment nodal volume as key contributors. CONCLUSIONS This ML models offer a non-invasive and effective approach for predicting pCR after neoadjuvant chemoimmunotherapy in NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHOUZHEN完成签到,获得积分10
3秒前
Yu发布了新的文献求助10
4秒前
橘如发布了新的文献求助30
5秒前
科研通AI2S应助远志采纳,获得10
5秒前
9秒前
Ava应助可靠不凡采纳,获得10
9秒前
科研通AI5应助huangzitong采纳,获得10
12秒前
周陆完成签到 ,获得积分10
12秒前
月亮门完成签到 ,获得积分10
13秒前
14秒前
糊涂的胡发布了新的文献求助10
15秒前
vivid完成签到,获得积分10
17秒前
冷艳的纸鹤完成签到,获得积分10
19秒前
20秒前
yls发布了新的文献求助10
20秒前
21秒前
星辰大海应助Yu采纳,获得10
23秒前
26秒前
奋斗夏旋发布了新的文献求助10
27秒前
糊涂的胡完成签到,获得积分10
27秒前
liuyuh完成签到,获得积分10
28秒前
科研通AI5应助huangzitong采纳,获得10
29秒前
30秒前
HJJHJH发布了新的文献求助10
30秒前
倔驴发布了新的文献求助10
31秒前
烂漫夜梦完成签到,获得积分10
32秒前
今天只做一件事应助HJJHJH采纳,获得10
35秒前
Yu完成签到,获得积分20
36秒前
平淡菲音发布了新的文献求助10
36秒前
EVAN完成签到,获得积分10
36秒前
今后应助prim采纳,获得10
42秒前
辛夷完成签到,获得积分10
45秒前
科研通AI5应助huangzitong采纳,获得10
45秒前
wks666666完成签到,获得积分10
51秒前
小蘑菇应助细心斩采纳,获得30
54秒前
XXF完成签到,获得积分10
55秒前
隐形曼青应助花粉过敏采纳,获得30
55秒前
无花果应助zzx采纳,获得30
58秒前
风趣小蜜蜂完成签到,获得积分10
59秒前
liusui完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332038
捐赠科研通 3063426
什么是DOI,文献DOI怎么找? 1681673
邀请新用户注册赠送积分活动 807650
科研通“疑难数据库(出版商)”最低求助积分说明 763843