[A preliminary exploration of an intelligent system for personalized tooth morphology reconstruction based on deep learning].

形态学(生物学) 计算机科学 人工智能 深度学习 地质学 古生物学
作者
Miao Yu,Di Chen,Zhiyue Wang,Feng Liu,Y Y Zhang,Yongping Li,Jiao Shen
出处
期刊:PubMed 卷期号:60 (6): 618-625
标识
DOI:10.3760/cma.j.cn112144-20250331-00110
摘要

Objective: To integrate implicit templates with deep learning techniques, a novel neural network, the tooth-deformable deep implicit network (T-DDIN), was constructed to achieve high-precision shape completion of tooth defects in a personalized manner. Methods: A total of 550 intraoral scan models were collected from patients treated at the Department of Orthodontics and Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University (500 for training and 50 for testing), between March 2022 and March 2024. T-DDIN reconstructed defective tooth morphology using an implicit template and a latent encoding prediction network. During model evaluation, Class Ⅱ cavity defects and occlusal wear defects were simulated in the test set. Morphological restoration was performed using both traditional computer aided design (CAD) methods and the T-DDIN deep learning approach. The two methods were compared based on three-dimensional deviation, occlusal adjustment volumes, cusp angle deviation, and restoration time. Results: The T-DDIN group demonstrated significantly lower three-dimensional deviation for Class Ⅱ cavity defects and occlusal wear restoration [(0.14±0.05) and (0.16±0.09) mm], occlusal adjustment volumes [(0.44±0.03) and (0.49±0.03) mm3], and difference value of the tooth cusp angles (5.69°±1.90° and 6.04°±0.53°) compared to the traditional CAD group (both P<0.001). No significant differences were observed within the T-DDIN group between the two defect types in terms of three-dimensional deviation (P=0.098) or occlusal adjustment volume (P=0.154) or difference value of the tooth cusp angles (P=0.196). However, in the traditional CAD group, three-dimensional deviation, occlusal adjustment volume and difference value of the tooth cusp angles was significantly higher in occlusal wear restorations than in Class Ⅱ cavity defects restorations (P<0.001). The T-DDIN group, which involved Class Ⅱ cavity defects and occlusal wear, demonstrated significantly less recovery time of morphology (37.2±7.7) and (39.4±6.2) s compared to the traditional CAD group (P<0.001). Conclusions: T-DDIN demonstrated superior stability and accuracy in morphological reconstruction for various types of dental defects while significantly reducing restoration time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
animenz完成签到,获得积分10
1秒前
完美世界应助zll采纳,获得10
2秒前
2秒前
3秒前
研友_VZG7GZ应助贾不可采纳,获得10
3秒前
沐沐溪三清完成签到 ,获得积分10
4秒前
4秒前
5秒前
慕青应助JT采纳,获得10
6秒前
失眠的霸完成签到,获得积分10
6秒前
熊伪装完成签到,获得积分10
7秒前
9秒前
云儿完成签到,获得积分10
9秒前
9秒前
王雨晨发布了新的文献求助10
9秒前
RoyChen发布了新的文献求助30
10秒前
甜辣小泡芙完成签到,获得积分10
10秒前
安详映阳完成签到 ,获得积分10
12秒前
qiang发布了新的文献求助10
12秒前
12秒前
lm完成签到,获得积分10
13秒前
13秒前
hyyyyy完成签到,获得积分10
13秒前
22222完成签到 ,获得积分10
14秒前
14秒前
14秒前
小羊的夏天完成签到,获得积分10
15秒前
15秒前
hyyyyy发布了新的文献求助10
16秒前
16秒前
Adi完成签到,获得积分10
16秒前
lilil完成签到,获得积分10
17秒前
沉默晓兰关注了科研通微信公众号
17秒前
JT发布了新的文献求助10
19秒前
陶1122发布了新的文献求助10
19秒前
麦穗完成签到,获得积分10
20秒前
20秒前
科研通AI5应助longer采纳,获得10
20秒前
小马甲应助忐忑的远山采纳,获得10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4164460
求助须知:如何正确求助?哪些是违规求助? 3699903
关于积分的说明 11681850
捐赠科研通 3389399
什么是DOI,文献DOI怎么找? 1858789
邀请新用户注册赠送积分活动 919274
科研通“疑难数据库(出版商)”最低求助积分说明 831988