DCA-U-Net: A Deep Learning Network for Segmentation of Laser-Induced Thermal Damage Regions in Mouse Skin OCT Images

分割 块(置换群论) 人工智能 计算机科学 深度学习 光学相干层析成像 限制 特征(语言学) 模式识别(心理学) 医学 数学 工程类 放射科 几何学 机械工程 语言学 哲学
作者
C. F. Xu,Qiong Ma,Jingyuan Wu,Wei Yu,Qi Liu,Qingyu Cai,Haiyang Sun,Xiaoan Tang,Hongxiang Kang
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
标识
DOI:10.1088/2057-1976/adcd7c
摘要

Abstract Laser-induced thermal injury is a common form of skin damage in clinical treatment, and accurately assessing the extent of injury and treatment efficacy is crucial for patient recovery. In recent years, deep learning models have been increasingly applied to the automatic segmentation of skin injury regions. However, existing methods often suffer from a large number of parameters, leading to a significant decline in segmentation accuracy when reducing the number of model parameters, thus limiting their clinical applicability. To address this issue, we propose an efficient and lightweight segmentation model, Dilated ConvNeXT Attention U-Net (DCA-U-Net), based on U-Net. By incorporating the more efficient Dilated ConvNeXT Block (DCB) and Dual Module Attention Block (DMAB), DCA-U-Net significantly reduces the number of parameters while simultaneously improving feature extraction capability and segmentation accuracy. Compared to the standard U-Net, our model reduces the number of parameters by 33%. Experimental results on two different sections of mouse skin laser thermal damage Optical Coherence Tomography (OCT) datasets show that our model has better segmentation performance with insufficient or sufficient amount of data. These improvements not only enhance the model's ability to accurately identify skin thermal injury regions, but also substantially reduce computational costs while maintaining high segmentation accuracy, offering promising technical support for the precise diagnosis and treatment of skin laser thermal injuries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心市民小红花应助QIQ采纳,获得10
2秒前
大胆次位子完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
田様应助可乐采纳,获得10
5秒前
7秒前
英俊的铭应助Qianwen采纳,获得10
8秒前
10秒前
12秒前
turui完成签到 ,获得积分10
12秒前
李健的小迷弟应助Tyler采纳,获得10
14秒前
mar完成签到,获得积分10
14秒前
14秒前
可爱的函函应助wwb采纳,获得10
15秒前
隐形曼青应助JV采纳,获得10
17秒前
重要忆秋完成签到,获得积分10
17秒前
可乐发布了新的文献求助10
17秒前
ding应助小北采纳,获得10
20秒前
20秒前
20秒前
LCG20010909完成签到,获得积分10
24秒前
25秒前
赘婿应助幸福的初晴采纳,获得30
26秒前
领导范儿应助科研通管家采纳,获得10
26秒前
冰魂应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
英姑应助科研通管家采纳,获得10
26秒前
共享精神应助科研通管家采纳,获得10
26秒前
26秒前
雨声完成签到,获得积分10
27秒前
JV发布了新的文献求助10
28秒前
慕青应助开朗的觅柔采纳,获得10
28秒前
量子星尘发布了新的文献求助10
29秒前
跨越山海的热爱完成签到 ,获得积分10
31秒前
32秒前
金枪鱼子完成签到 ,获得积分10
32秒前
guaiguai完成签到,获得积分10
33秒前
36秒前
37秒前
37秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874358
求助须知:如何正确求助?哪些是违规求助? 3416642
关于积分的说明 10700086
捐赠科研通 3140834
什么是DOI,文献DOI怎么找? 1733027
邀请新用户注册赠送积分活动 835716
科研通“疑难数据库(出版商)”最低求助积分说明 782177