Expert consensus document on artificial intelligence of the Italian Society of Cardiology

可解释性 医学 人工智能 机器学习 人工神经网络 深度学习 心房颤动 重症监护医学 计算机科学 内科学
作者
Ciro Indolfi,Elisabetta Salvioni,Francesco Barillà,Andrea Barison,Stefano Benenati,Grzegorz Bilo,Giuseppe Boriani,Natale Daniele Brunetti,Paolo Calabrò,Stefano Carugo,Michela Casella,Michele Ciccarelli,Marco Matteo Ciccone,Gaetano Maria De Ferrari,Gianluigi Greco,Giovanni Esposito,Emanuela H. Locati,Andrea Mariani,Marco Merlo,Saverio Muscoli
出处
期刊:Journal of Cardiovascular Medicine [Lippincott Williams & Wilkins]
卷期号:26 (5): 200-215
标识
DOI:10.2459/jcm.0000000000001716
摘要

Artificial intelligence (AI), a branch of computer science focused on developing algorithms that replicate intelligent behaviour, has recently been used in patients management by enhancing diagnostic and prognostic capabilities of various resources such as hospital datasets, electrocardiograms and echocardiographic acquisitions. Machine learning (ML) and deep learning (DL) models, both key subsets of AI, have demonstrated robust applications across several cardiovascular diseases, from the most diffuse like hypertension and ischemic heart disease to the rare infiltrative cardiomyopathies, as well as to estimation of LDL cholesterol which can be achieved with better accuracy through AI. Additional emerging applications are encountered when unsupervised ML methodology shows promising results in identifying distinct clusters or phenotypes of patients with atrial fibrillation that may have different risks of stroke and response to therapy. Interestingly, since ML techniques do not analyse the possibility that a specific pathology can occur but rather the trajectory of each subject and the chain of events that lead to the occurrence of various cardiovascular pathologies, it has been considered that DL, by resembling the complexity of human brain and using artificial neural networks, might support clinical management through the processing of large amounts of complex information; however, external validity of algorithms cannot be taken for granted, while interpretability of the results may be an issue, also known as a “black box” problem. Notwithstanding these considerations, facilities and governments are willing to unlock the potential of AI in order to reach the final step of healthcare advancements while ensuring that patient safety and equity are preserved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
朴实子骞发布了新的文献求助10
1秒前
细腻沅完成签到,获得积分10
5秒前
丘比特应助king采纳,获得10
5秒前
阿湛发布了新的文献求助10
5秒前
优秀冰香完成签到,获得积分10
6秒前
6秒前
7秒前
BINGBING应助活泼的风华采纳,获得40
8秒前
木炭完成签到,获得积分10
8秒前
SciGPT应助LLL采纳,获得10
9秒前
可爱的函函应助马里奥采纳,获得10
9秒前
科研通AI5应助盛夏如花采纳,获得30
9秒前
桐桐应助LLL采纳,获得10
9秒前
酷波er应助LLL采纳,获得10
9秒前
后来应助LLL采纳,获得10
9秒前
科研通AI5应助LLL采纳,获得10
9秒前
wanci应助LLL采纳,获得10
9秒前
科研通AI2S应助LLL采纳,获得10
9秒前
星辰大海应助LLL采纳,获得10
9秒前
爆米花应助LLL采纳,获得10
9秒前
10秒前
10秒前
Ytgl发布了新的文献求助10
10秒前
13秒前
orixero应助GongSyi采纳,获得10
14秒前
多多完成签到,获得积分10
14秒前
15秒前
16秒前
爱吃年糕发布了新的文献求助10
16秒前
Akim应助哈哈哈哈采纳,获得10
16秒前
科研通AI5应助土木研学僧采纳,获得10
16秒前
科研通AI5应助土木研学僧采纳,获得10
16秒前
wanci应助YYMM采纳,获得10
16秒前
king发布了新的文献求助10
18秒前
19秒前
19秒前
清风朗月完成签到,获得积分10
20秒前
敏感的春天完成签到,获得积分10
21秒前
包容的瑾瑜完成签到,获得积分10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814887
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399091
捐赠科研通 3076489
什么是DOI,文献DOI怎么找? 1689843
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608