Estimation of magnetization directions using a sequential approach with inversion of normalized source strength and Bayesian Monte-Carlo method

蒙特卡罗方法 反演(地质) 贝叶斯概率 磁化 统计物理学 计算机科学 混合蒙特卡罗 算法 马尔科夫蒙特卡洛 数学 统计 地质学 人工智能 物理 地震学 磁场 量子力学 构造学
作者
Shida Sun,Hongrui Xu,Qingshan Zhang,Meng Qing-xin,Jingjie Cao
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-75
标识
DOI:10.1190/geo2024-0128.1
摘要

Total magnetization direction is not only an important parameter in magnetic data analysis, but also provides valuable insights into the magnetic mineral composition, structure, and evolution of its sources. However, this direction is often unknown in the presence of strong remanent magnetization. We developed a sequential approach comprising three steps to estimate the magnetization directions of sources. The spatial locations and shapes of the anomalous bodies are first determined using L 1 -norm inversion of normalized source strength (NSS). For each anomalous body, the three components of the magnetic anomalous vector are then obtained through a fast forward calculation based on Poisson's relation. A Bayesian Monte-Carlo inversion of total-field data is last employed to estimate the unknown magnetization directions of all anomalous bodies and their associated uncertainties. A synthetic model consisting of two causative bodies with distinct total magnetization directions was tested to validate this approach. Moreover, we analyzed the sensitivities of three magnetization parameters and comprehensively investigated the influences of several factors on the estimation results. A field data example using the total-field magnetic anomaly over the Black Hill Intrusive Complex was also studied. The results and analyses suggest that the proposed approach is applicable to sources containing multiple bodies with varying magnetization directions. In addition, supplementary prior information is advisable for cases where the inversion of NSS is not suitable in the first step, such as when the source body is located at great deep or has an asymmetric shape.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
飘逸的傲霜完成签到 ,获得积分10
6秒前
火星上的百川完成签到,获得积分10
7秒前
Sss发布了新的文献求助10
8秒前
健康的修洁完成签到 ,获得积分10
10秒前
11秒前
婷小胖完成签到,获得积分10
11秒前
zzzzzz发布了新的文献求助10
16秒前
多情的忆之完成签到,获得积分10
16秒前
18秒前
英俊的铭应助可乐不加冰采纳,获得10
26秒前
xzy998应助zzzzzz采纳,获得10
28秒前
洁白的故人完成签到 ,获得积分10
29秒前
科研通AI5应助刘小明采纳,获得30
29秒前
29秒前
萨格完成签到 ,获得积分10
30秒前
36秒前
37秒前
Frost完成签到,获得积分10
38秒前
请问发布了新的文献求助10
40秒前
Liangc333完成签到 ,获得积分10
40秒前
香蕉觅云应助西坡万岁采纳,获得10
41秒前
41秒前
CY发布了新的文献求助10
44秒前
46秒前
刘小明发布了新的文献求助30
46秒前
qhdsyxy完成签到 ,获得积分0
47秒前
49秒前
50秒前
张达发布了新的文献求助10
50秒前
西坡万岁完成签到,获得积分10
51秒前
pluto应助过过过采纳,获得10
51秒前
Sss完成签到,获得积分20
54秒前
西坡万岁发布了新的文献求助10
55秒前
直率的画笔完成签到,获得积分10
55秒前
一只五条悟完成签到,获得积分10
57秒前
隐形曼青应助科研通管家采纳,获得10
58秒前
niu应助科研通管家采纳,获得10
58秒前
完美世界应助科研通管家采纳,获得30
58秒前
Orange应助科研通管家采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777971
求助须知:如何正确求助?哪些是违规求助? 3323559
关于积分的说明 10214919
捐赠科研通 3038747
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798254
科研通“疑难数据库(出版商)”最低求助积分说明 758315