Fiber-reinforced gelatin-based hydrogel biocomposite tubular scaffolds with programmable mechanical properties

生物复合材料 材料科学 明胶 复合材料 纤维 复合数 生物化学 化学
作者
Yu Xiong,Zhongfei Zou,Yi Li,Jiachun Li,Yuewei Chen,Wenhai Shi,Xixia Liu,Ruibin Guo,Xianhui Cai
出处
期刊:Biomedical Materials [IOP Publishing]
标识
DOI:10.1088/1748-605x/add2bc
摘要

Tissue-engineered tubular scaffolds (TETS) provide an effective repair solution for human tubular tissue loss and damage caused by congenital defects, disease, or mechanical trauma. However, there are still major challenges to developing tissue-engineered tubular scaffolds with excellent mechanical properties and biocompatibility for human tubular tissue repair. Gelatin-based hydrogels are suitable candidates for tissue-engineered scaffolds because they are hydrolyzed collagen products and have excellent biocompatibility and degradability. However, the mechanical properties of gelatin-based hydrogels are relatively poor and do not align well with the mechanical properties of human tubular tissues. Inspired by the extracellular matrix (ECM) architecture of human tubular tissues, this study utilizes high-precision 3D printing to fabricate ultrafine fiber network tubular scaffolds (UFNTS) that mimic the arrangement of collagen fibers, which are then embedded in a cell-compatible gelatin-based hydrogel, resulting in the preparation of a fiber/hydrogel biocomposite tubular scaffold (BCTS) with tunable mechanical properties and a J-shaped stress-strain response. Finite element analysis (FEA) was employed to predict the mechanical behavior of the UFNTS and BCTS. Experimental results indicate that by modifying the structural parameters of the UFNTS, the mechanical properties of the BCTS can be effectively tuned, achieving a programmable range of tensile modulus (0.2-4.35 MPa) and burst pressure (1580-7850 mmHg), which broadly covers the mechanical properties of most human tubular tissues. The design and fabrication of BCTS offer a new approach for the development of TETS while also providing a personalized strategy for such scaffolds in tissue engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
虾滑丸子发布了新的文献求助10
刚刚
1秒前
1秒前
111111111发布了新的文献求助10
1秒前
大个应助zzzyyyuuu采纳,获得10
2秒前
高贵东蒽发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
畅快的胡萝卜完成签到,获得积分10
6秒前
6秒前
xiaodong发布了新的文献求助10
6秒前
顺利秋灵发布了新的文献求助10
8秒前
鹏飞九霄完成签到,获得积分10
10秒前
大模型应助爱笑的宝马采纳,获得10
11秒前
Steve发布了新的文献求助10
11秒前
彭于晏应助流星雨采纳,获得10
15秒前
斯文败类应助顺利秋灵采纳,获得10
15秒前
16秒前
鸣笛应助果汁采纳,获得10
17秒前
19秒前
19秒前
华仔应助英俊的小鸽子采纳,获得10
19秒前
tough_cookie完成签到 ,获得积分10
19秒前
21秒前
21秒前
21秒前
曹问芙发布了新的文献求助10
22秒前
23秒前
syvshc应助科研通管家采纳,获得10
24秒前
syvshc应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
24秒前
科目三应助科研通管家采纳,获得10
24秒前
Cole发布了新的文献求助10
24秒前
syvshc应助科研通管家采纳,获得10
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
syvshc应助科研通管家采纳,获得10
24秒前
syvshc应助科研通管家采纳,获得10
24秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899749
求助须知:如何正确求助?哪些是违规求助? 3444358
关于积分的说明 10834679
捐赠科研通 3169272
什么是DOI,文献DOI怎么找? 1751092
邀请新用户注册赠送积分活动 846457
科研通“疑难数据库(出版商)”最低求助积分说明 789191