点式的
先验与后验
对偶(语法数字)
应用数学
数学
Dirac(视频压缩格式)
数学分析
计算机科学
物理
量子力学
认识论
哲学
语言学
中微子
作者
Li Fei,Jingang Liu,Ning Zhong
标识
DOI:10.4208/aamm.oa-2023-0186
摘要
In this paper, a pointwise goal-oriented residual-based a posteriori error estimator is proposed for linear elliptic equations with restricted source terms. The pointwise error is directly estimated by introducing the dual problem with a Dirac delta source term instead of using classical mollification technique. The goal-oriented error estimator is proved to be the upper bound of the pointwise error. Numerical experiments show the advantage of the adaptive finite element method (AFEM) based on this error estimator, which can preserve the monotonicity of the pointwise error, compared with the goal-oriented AFEM using the mollification technique.
科研通智能强力驱动
Strongly Powered by AbleSci AI