A sound-sensitive neuron incorporating a memristive-ion channel

作者
Xinlin Song,Ge Zhang,Feifei Yang
出处
期刊:Chinese Physics B [IOP Publishing]
标识
DOI:10.1088/1674-1056/ae0563
摘要

Abstract The nonlinear memory characteristic of memristors is similar to that of biological synapses/ion channels. Therefore, memristors become an ideal component for constructing neurons. This paper presents a sound-sensitive neuron circuit featuring a memristor-based hybrid ion channel, aiming to simulate the dynamic response mechanism of biological auditory neurons to acoustic signals. In this neural circuit, a piezoelectric ceramic element captures external sound signals, while a hybrid ion channel is constructed by connecting a charge-controlled memristor in series with an inductor. The circuit achieves selective encoding of sound frequency and amplitude and investigates the effects of external electric fields on neuronal ion channels. In the dynamic analysis, bifurcation diagrams and Lyapunov exponents are employed to reveal the rich nonlinear behaviors (such as chaotic oscillations and periodic oscillations) generated by the circuit during the acoustic-electric conversion process, and the validity of the circuit model is experimentally verified. The simulation results show that by adjusting the threshold of the ratio between electric field energy and magnetic field energy, the firing mode and parameters of neurons can be adaptively regulated. Moreover, this model exhibits the phenomenon of stochastic resonance in a noisy environment. This research provides a theoretical basis for the development of new bionic auditory sensor hardware. At the same time, it opens up a new path for the bio-inspired design of the memristor-ion channel hybrid system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小斌发布了新的文献求助10
2秒前
王猛发布了新的文献求助10
3秒前
yfh1997发布了新的文献求助10
3秒前
4秒前
hx完成签到 ,获得积分10
4秒前
4秒前
小猪坨完成签到,获得积分10
5秒前
czq发布了新的文献求助20
5秒前
6秒前
独特的寻菡完成签到,获得积分10
6秒前
邵小庆完成签到,获得积分10
6秒前
浮游应助猫猫人采纳,获得10
7秒前
拂晓发布了新的文献求助10
7秒前
小线团黑桃完成签到,获得积分10
8秒前
ding应助孤岛飞鹰采纳,获得10
9秒前
Eileen完成签到 ,获得积分10
9秒前
10秒前
徐豪杰应助holl采纳,获得10
11秒前
CipherSage应助yfh1997采纳,获得10
11秒前
打打应助czq采纳,获得10
11秒前
方超完成签到,获得积分10
11秒前
12秒前
舒心亦凝发布了新的文献求助10
13秒前
13秒前
13秒前
zzz完成签到,获得积分10
13秒前
苗英发布了新的文献求助10
13秒前
Koalas应助好好学习采纳,获得20
14秒前
kim发布了新的文献求助10
15秒前
16秒前
负责的数据线完成签到,获得积分10
16秒前
17秒前
善学以致用应助zxc采纳,获得10
17秒前
汉堡包应助冷静易巧采纳,获得10
17秒前
shizi发布了新的文献求助10
18秒前
感动的傲白关注了科研通微信公众号
18秒前
爆米花应助rosemary采纳,获得10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184408
求助须知:如何正确求助?哪些是违规求助? 4370229
关于积分的说明 13609334
捐赠科研通 4222301
什么是DOI,文献DOI怎么找? 2315790
邀请新用户注册赠送积分活动 1314326
关于科研通互助平台的介绍 1263281