SOS: Stereo Matching in O(1) with Slanted Support Windows

初始化 计算机科学 管道(软件) 人工智能 计算 计算机视觉 立体摄像机 平滑度 极线几何 钥匙(锁) 匹配(统计) 利用 立体视觉 算法 图像(数学) 数学 统计 数学分析 计算机安全 程序设计语言
作者
Vladimir Tankovich,Michael Schoenberg,Sean Fanello,Adarsh Kowdle,Christoph Rhemann,Maksym Dzitsiuk,Mirko Schmidt,Julien Valentin,Shahram Izadi
标识
DOI:10.1109/iros.2018.8593800
摘要

Depth cameras have accelerated research in many areas of computer vision. Most triangulation-based depth cameras, whether structured light systems like the Kinect or active (assisted) stereo systems, are based on the principle of stereo matching. Depth from stereo is an active research topic dating back 30 years. Despite recent advances, algorithms usually trade-off accuracy for speed. In particular, efficient methods rely on fronto-parallel assumptions to reduce the search space and keep computation low. We present SOS (Slanted O(1) Stereo), the first algorithm capable of leveraging slanted support windows without sacrificing speed or accuracy. We use an active stereo configuration, where an illuminator textures the scene. Under this setting, local methods - such as PatchMatch Stereo - obtain state of the art results by jointly estimating disparities and slant, but at a large computational cost. We observe that these methods typically exploit local smoothness to simplify their initialization strategies. Our key insight is that local smoothness can in fact be used to amortize the computation not only within initialization, but across the entire stereo pipeline. Building on these insights, we propose a novel hierarchical initialization that is able to efficiently perform search over disparity and slants. We then show how this structure can be leveraged to provide high quality depth maps. Extensive quantitative evaluations demonstrate that the proposed technique yields significantly more precise results than current state of the art, but at a fraction of the computational cost. Our prototype implementation runs at 4000 fps on modern GPU architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马户的崛起完成签到,获得积分10
1秒前
li发布了新的文献求助10
1秒前
2秒前
zzz完成签到,获得积分10
4秒前
耍酷的斩发布了新的文献求助10
4秒前
5秒前
桐桐应助安详的未来采纳,获得10
6秒前
6秒前
ZR发布了新的文献求助10
7秒前
9秒前
蒋依伶发布了新的文献求助10
10秒前
11发布了新的文献求助10
11秒前
baobaonaixi完成签到,获得积分10
11秒前
along完成签到,获得积分10
14秒前
张张完成签到 ,获得积分10
15秒前
Luna完成签到 ,获得积分10
16秒前
蒋依伶完成签到,获得积分20
17秒前
常常完成签到,获得积分10
19秒前
11完成签到,获得积分20
20秒前
win完成签到 ,获得积分10
20秒前
偷乐完成签到,获得积分10
23秒前
li完成签到,获得积分10
24秒前
呆萌冷玉完成签到,获得积分10
27秒前
耍酷的斩完成签到,获得积分10
27秒前
知来者完成签到,获得积分10
29秒前
感动的飞鸟完成签到,获得积分10
30秒前
干净以珊发布了新的文献求助10
30秒前
FashionBoy应助少7一点8采纳,获得10
30秒前
31秒前
大气的乌冬面完成签到,获得积分10
33秒前
NexusExplorer应助学术裁缝采纳,获得10
35秒前
贾舒涵发布了新的文献求助30
36秒前
37秒前
huqing完成签到,获得积分10
37秒前
小元同学完成签到,获得积分10
37秒前
replay完成签到,获得积分10
38秒前
您好完成签到,获得积分10
39秒前
思源应助自信河马采纳,获得10
41秒前
无花果应助干净以珊采纳,获得10
45秒前
您好发布了新的文献求助10
47秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841914
求助须知:如何正确求助?哪些是违规求助? 3383975
关于积分的说明 10532095
捐赠科研通 3104184
什么是DOI,文献DOI怎么找? 1709543
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878