环境科学
空气污染
差异(会计)
地理信息系统
污染物
线性回归
回归分析
空气污染物
污染
暴露评估
遥感
环境卫生
统计
地理
数学
医学
化学
有机化学
业务
会计
生物
生态学
作者
Chin-Yu Hsu,Chih‐Da Wu,Ya Ping Hsiao,Yu‐Cheng Chen,Mu-Jean Chen,Shih‐Chun Candice Lung
出处
期刊:Remote Sensing
[Multidisciplinary Digital Publishing Institute]
日期:2018-12-06
卷期号:10 (12): 1971-1971
被引量:23
摘要
Epidemiology estimates how exposure to pollutants may impact human health. It often needs detailed determination of ambient concentrations to avoid exposure misclassification. However, it is unrealistic to collect pollutant data from each and every subject. Land-use regression (LUR) models have thus been used frequently to estimate individual levels of exposures to ambient air pollution. This paper used remote sensing and geographical information system (GIS) tools to develop ten regression models for PM2.5-bound compound concentration based on measurements of a six-year period including , OC, EC, Ba, Mn, Cu, Zn, and Sb. The explained variance (R2) of these LUR models ranging from 0.60 to 0.92 confirms that this study successfully estimated the fine spatial variability of PM2.5-bound compound concentrations in Taiwan where the distribution of traffic, industrial area, greenness, and culture-specific PM2.5 sources like temples collected from GIS and remote sensing data were main variables. In particular, while they were much less used, this study showcased the necessity of remote sensing data of greenness in future LUR studies for reducing the exposure bias. In terms of local residents’ health outcome or health effect indicators, this study further offers much-needed support for future air epidemiological studies. The results provide important insights into expanding the application of GIS and remote sensing on exposure assessment for PM2.5-bound compounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI