Dendritic Spines in Depression: What We Learned from Animal Models

树突棘 伏隔核 慢性应激 神经科学 前额叶皮质 海马体 扁桃形结构 眶额皮质 萧条(经济学) 社会失败 心理学 习惯化 医学 海马结构 中枢神经系统 认知 经济 宏观经济学
作者
Hui Qiao,Ming-Xing Li,Chang Xu,Hui-Bin Chen,Shu-Cheng An,Xin-Ming Ma
出处
期刊:Neural Plasticity [Hindawi Publishing Corporation]
卷期号:2016: 1-26 被引量:403
标识
DOI:10.1155/2016/8056370
摘要

Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助JAN采纳,获得10
1秒前
2秒前
2秒前
3秒前
科研通AI6应助popo采纳,获得10
3秒前
隐形曼青应助零零落落采纳,获得10
3秒前
乐乐应助Jorna采纳,获得10
3秒前
3秒前
闫卫东完成签到,获得积分10
3秒前
连垣完成签到,获得积分10
4秒前
4秒前
xiawqo完成签到,获得积分10
4秒前
5秒前
药药55完成签到,获得积分10
6秒前
习惯ing完成签到,获得积分20
7秒前
yqing应助DJ想吃饭了采纳,获得10
8秒前
9秒前
科研通AI6应助嗯嗯采纳,获得10
9秒前
合适的白筠完成签到,获得积分10
10秒前
11秒前
Rita发布了新的文献求助10
11秒前
Zx_1993应助不皂采纳,获得20
12秒前
拼搏冬瓜完成签到 ,获得积分10
13秒前
14秒前
14秒前
机智小兔子完成签到,获得积分20
15秒前
15秒前
chenjun7080发布了新的文献求助10
16秒前
汉堡包应助xianbei采纳,获得10
16秒前
孤独的广缘完成签到,获得积分10
17秒前
18秒前
我是老大应助黑尼格采纳,获得10
19秒前
19秒前
义气白枫发布了新的文献求助10
20秒前
20秒前
pluto应助WX采纳,获得10
20秒前
21秒前
21秒前
哈基米德应助KELE采纳,获得20
22秒前
LM发布了新的文献求助10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207406
求助须知:如何正确求助?哪些是违规求助? 4385353
关于积分的说明 13656706
捐赠科研通 4243935
什么是DOI,文献DOI怎么找? 2328474
邀请新用户注册赠送积分活动 1326166
关于科研通互助平台的介绍 1278375