甲基乙二醛
氧化应激
化学
活性氧
TFAM公司
线粒体生物发生
谷胱甘肽
糖基化
乳糖谷胱甘肽裂解酶
线粒体ROS
线粒体
三磷酸腺苷
生物化学
细胞生物学
受体
生物
酶
作者
Kwang Sik Suh,Suk Chon,Eun Mi Choi
摘要
Methylglyoxal (MG) is an endogenous product of glucose metabolism known to be toxic to cells and to be present in elevated concentrations under certain pathophysiological conditions. In the present study the effect of actein isolated from black cohosh on MG-induced cytotoxicity was investigated in MC3T3-E1 osteoblastic cells.Treatment of MC3T3-E1 osteoblastic cells with actein prevented MG-induced cell death and the production of intracellular reactive oxygen species (ROS), mitochondrial superoxide, inflammatory cytokines and soluble receptor for advanced glycation end-products (sRAGE). In addition, actein increased the activity of glyoxalase I and levels of reduced glutathione (GSH) and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). These findings suggest that actein protects against MG-induced cell damage by reducing oxidative stress and increasing MG detoxification. Treatment with actein prior to MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation and adenosine triphosphate (ATP) loss. Additionally, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and nitric oxide (NO) levels were significantly increased by actein, suggesting that actein may induce mitochondrial biogenesis.This study demonstrates that actein reduces MG-induced damage in osteoblastic MC3T3-E1 cells by enhancing antioxidant defenses, the glyoxalase system and mitochondrial biogenesis. © 2016 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI