Application of the adaptive subspace detector to Raman spectra for biological threat detection

计算机科学 探测器 恒虚警率 杂乱 高光谱成像 人工智能 灵敏度(控制系统) 子空间拓扑 假警报 算法 模式识别(心理学) 雷达 电信 电子工程 工程类
作者
Thomas A. Russell,Steven Borchardt,Richard H. Anderson,Patrick J. Treado,Jason H. Neiss
出处
期刊:Proceedings of SPIE 卷期号:6378: 637807-637807 被引量:1
标识
DOI:10.1117/12.686587
摘要

Effective application of point detectors in the field to monitor the air for biological attack imposes a challenging set of requirements on threat detection algorithms. Raman spectra exhibit features that discriminate between threats and non-threats, and such spectra can be collected quickly, offering a potential solution given the appropriate algorithm. The algorithm must attempt to match to known threat signatures, while suppressing the background clutter in order to produce acceptable Receiver Operating Characteristic (ROC) curves. The radar space-time adaptive processing (STAP) community offers a set of tools appropriate to this problem, and these have recently crossed over into hyperspectral imaging (HSI) applications. The Adaptive Subspace Detector (ASD) is the Generalized Likelihood Ratio Test (GLRT) detector for structured backgrounds (which we expect for Raman background spectra) and mixed pixels, and supports the necessary adaptation to varying background environments. The structured background model reduces the training required for that adaptation, and the number of statistical assumptions required. We applied the ASD to large Raman spectral databases collected by ChemImage, developed spectral libraries of threat signatures and several backgrounds, and tested the algorithm against individual and mixture spectra, including in blind tests. The algorithm was successful in detecting threats, however, in order to maintain the desired false alarm rate, it was necessary to shift the decision threshold so as to give up some detection sensitivity. This was due to excess spread of the detector histograms, apparently related to variability in the signatures not captured by the subspaces, and evidenced by non-Gaussian residuals. We present here performance modeling, test data, algorithm and sensor performance results, and model validation conclusions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaowei666完成签到,获得积分10
2秒前
3秒前
4秒前
邹帅发布了新的文献求助10
5秒前
晰默发布了新的文献求助10
5秒前
zhouleiwang发布了新的文献求助10
5秒前
所所应助留胡子的不弱采纳,获得10
6秒前
6秒前
星辰大海应助Youth采纳,获得10
8秒前
佳语妍说完成签到,获得积分10
9秒前
wholelink完成签到 ,获得积分10
9秒前
zhouleiwang完成签到,获得积分10
10秒前
10秒前
10秒前
后来应助Oct采纳,获得50
10秒前
10秒前
默默善愁发布了新的文献求助10
11秒前
Ava应助帅气的plum采纳,获得10
12秒前
13秒前
付广文发布了新的文献求助10
13秒前
MyXu发布了新的文献求助10
13秒前
Hello应助www采纳,获得10
14秒前
14秒前
15秒前
15秒前
威武水蜜桃完成签到,获得积分10
15秒前
活泼的稀发布了新的文献求助20
15秒前
minmi发布了新的文献求助20
16秒前
17秒前
优雅的书瑶完成签到 ,获得积分10
17秒前
17秒前
taco发布了新的文献求助20
17秒前
77要减肥发布了新的文献求助10
17秒前
风趣乌冬面完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
rui2820完成签到,获得积分10
18秒前
18秒前
丘比特应助哈哈哈采纳,获得10
19秒前
美好斓发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649163
求助须知:如何正确求助?哪些是违规求助? 4777416
关于积分的说明 15046744
捐赠科研通 4808022
什么是DOI,文献DOI怎么找? 2571211
邀请新用户注册赠送积分活动 1527796
关于科研通互助平台的介绍 1486697