卷积神经网络
人工智能
血涂片
计算机科学
学习迁移
疟疾
深度学习
模式识别(心理学)
机器学习
人工神经网络
显微镜
病理
医学
作者
Zhaohui Liang,Andrew J. Powell,Ilker Ersoy,Mahdieh Poostchi,Kamolrat Silamut,Kannappan Palaniappan,Peng Guo,Md. Amir Hossain,Antani Sameer,Richard J. Maude,Jimmy Xiangji Huang,Stefan Jaeger,George R. Thoma
标识
DOI:10.1109/bibm.2016.7822567
摘要
Malaria is a major global health threat. The standard way of diagnosing malaria is by visually examining blood smears for parasite-infected red blood cells under the microscope by qualified technicians. This method is inefficient and the diagnosis depends on the experience and the knowledge of the person doing the examination. Automatic image recognition technologies based on machine learning have been applied to malaria blood smears for diagnosis before. However, the practical performance has not been sufficient so far. This study proposes a new and robust machine learning model based on a convolutional neural network (CNN) to automatically classify single cells in thin blood smears on standard microscope slides as either infected or uninfected. In a ten-fold cross-validation based on 27,578 single cell images, the average accuracy of our new 16-layer CNN model is 97.37%. A transfer learning model only achieves 91.99% on the same images. The CNN model shows superiority over the transfer learning model in all performance indicators such as sensitivity (96.99% vs 89.00%), specificity (97.75% vs 94.98%), precision (97.73% vs 95.12%), F1 score (97.36% vs 90.24%), and Matthews correlation coefficient (94.75% vs 85.25%).
科研通智能强力驱动
Strongly Powered by AbleSci AI