EMMLi: A maximum likelihood approach to the analysis of modularity

阿卡克信息准则 生物 模块化(生物学) 特质 统计 航程(航空) 猕猴 进化生物学 计算机科学 模式识别(心理学) 人工智能 数学 古生物学 复合材料 材料科学 程序设计语言
作者
Anjali Goswami,John A. Finarelli
出处
期刊:Evolution [Wiley]
卷期号:70 (7): 1622-1637 被引量:86
标识
DOI:10.1111/evo.12956
摘要

Identification of phenotypic modules, semiautonomous sets of highly correlated traits, can be accomplished through exploratory (e.g., cluster analysis) or confirmatory approaches (e.g., RV coefficient analysis). Although statistically more robust, confirmatory approaches are generally unable to compare across different model structures. For example, RV coefficient analysis finds support for both two‐ and six‐module models for the therian mammalian skull. Here, we present a maximum likelihood approach that takes into account model parameterization. We compare model log‐likelihoods of trait correlation matrices using the finite‐sample corrected Akaike Information Criterion, allowing for comparison of hypotheses across different model structures. Simulations varying model complexity and within‐ and between‐module contrast demonstrate that this method correctly identifies model structure and parameters across a wide range of conditions. We further analyzed a dataset of 3‐D data, consisting of 61 landmarks from 181 macaque (Macaca fuscata) skulls, distributed among five age categories, testing 31 models, including no modularity among the landmarks and various partitions of two, three, six, and eight modules. Our results clearly support a complex six‐module model, with separate within‐ and intermodule correlations. Furthermore, this model was selected for all five age categories, demonstrating that this complex pattern of integration in the macaque skull appears early and is highly conserved throughout postnatal ontogeny. Subsampling analyses demonstrate that this method is robust to relatively low sample sizes, as is commonly encountered in rare or extinct taxa. This new approach allows for the direct comparison of models with different parameterizations, providing an important tool for the analysis of modularity across diverse systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸的香萱完成签到 ,获得积分10
刚刚
jelly完成签到,获得积分10
刚刚
和谐以冬完成签到 ,获得积分10
1秒前
晏清发布了新的文献求助10
1秒前
南宫封伦完成签到,获得积分20
1秒前
1秒前
二世小卒完成签到,获得积分10
1秒前
1秒前
Scorpion完成签到,获得积分10
3秒前
简单的万恶关注了科研通微信公众号
3秒前
4秒前
zixu发布了新的文献求助10
4秒前
4秒前
敏感凝云完成签到 ,获得积分10
4秒前
CATT发布了新的文献求助30
4秒前
5秒前
5秒前
6秒前
呵呵发布了新的文献求助10
6秒前
归海诗珊完成签到,获得积分10
6秒前
扶溪筠完成签到,获得积分10
6秒前
6秒前
6秒前
甜茶完成签到,获得积分20
6秒前
天天快乐应助宋宋采纳,获得10
6秒前
信念123发布了新的文献求助10
6秒前
7秒前
拓扑超导相变完成签到 ,获得积分10
7秒前
善学以致用应助二世小卒采纳,获得10
7秒前
7秒前
飞快的紫夏完成签到,获得积分20
7秒前
李琦完成签到 ,获得积分10
7秒前
浮游应助沉静代秋采纳,获得10
7秒前
8秒前
lebron完成签到,获得积分20
8秒前
8秒前
8秒前
zyx应助后来采纳,获得10
9秒前
9秒前
bushuren发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506110
求助须知:如何正确求助?哪些是违规求助? 4601589
关于积分的说明 14477878
捐赠科研通 4535577
什么是DOI,文献DOI怎么找? 2485508
邀请新用户注册赠送积分活动 1468423
关于科研通互助平台的介绍 1440915