热电性
材料科学
铁电性
居里温度
光电子学
相变
响应度
极化(电化学)
电介质
电流(流体)
凝聚态物理
光电探测器
电气工程
物理化学
工程类
物理
化学
铁磁性
作者
Hongyu Li,Chris R. Bowen,Ya Yang
出处
期刊:Nano Energy
[Elsevier BV]
日期:2022-11-01
卷期号:102: 107657-107657
被引量:29
标识
DOI:10.1016/j.nanoen.2022.107657
摘要
Pyroelectric materials are of interest for waste heat utilization and thermal detection. However, the low output current and inefficiency reduces their effectiveness. Here, we utilize the abrupt decrease in polarization of ferroelectric BaTiO3 materials around Curie temperature to improve the output performance of a pyroelectric nanogenerator. The variation of the polarization leads to a large change in the density of surface free charges, resulting in an increase of pyroelectric current. We have designed a temperature control and recording system to realize direct measurement of the pyroelectric output current. The pyroelectric current, power and energy conversion efficiency of the device near the Curie temperature were measured to be 15.6-fold, 18-fold and 15.8-fold higher than those acquired near room temperature. Moreover, the temperature induced current and charge density enhancement can be applied to detect temperature and temperature change. The responsivity of the self-powered temperature sensor near Tc is 120 nC/cm2∙K, which 4.8 times higher than that near room temperature (25.1 nC/cm2∙K). The results confirmed the ability to exploit a ferroelectric phase transition for pyroelectric performance enhancement.
科研通智能强力驱动
Strongly Powered by AbleSci AI