Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach

计算机科学 节点(物理) 图形 技术融合 趋同(经济学) 透视图(图形) 相似性(几何) 数据挖掘 人工智能 理论计算机科学 经济 结构工程 工程类 图像(数学) 经济增长 操作系统
作者
Mingyu Park,Youngjung Geum
出处
期刊:Technological Forecasting and Social Change [Elsevier BV]
卷期号:183: 121934-121934 被引量:19
标识
DOI:10.1016/j.techfore.2022.121934
摘要

In this study, we propose a graph convolution network (GCN)-based patent-link prediction to predict technology convergence. We address the limitations of previous works, which neglect both the global information of a convergence network and the node features. We employ three features: GCN node features to represent global information, node features to characterize what kinds of information they have and how they are similar, and edge similarity to represent how frequently the two nodes are connected. Considering three categories of information, we conduct link prediction using machine learning (ML) to identify potential opportunities. To identify areas of technology convergence, we also support firm-level decision making using portfolio analysis. This study consists of two main stages: opportunity discovery which employs both GCN-based link prediction and ML, and opportunity validation which evaluates whether the identified technology opportunities are suitable from the firm's perspective. A case study is conducted for the mobile payment industry. A total of 17,540 patent documents with 36,871 positive links are used for GCN link prediction and ML. As a result of firm-level opportunity validation, a total of 395 cooperative patent classifications (CPC) were predicted to be possibly linked with 32 current CPCs of the target firm. The contributions come from two main aspects. From a theoretical perspective, this study employs GCN and node features to reflect the global graph structure for technology convergence. From a practical perspective, this study suggests how to validate the identified opportunities for firm-level applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tqmx发布了新的文献求助10
2秒前
好好养猪发布了新的文献求助10
2秒前
3秒前
情怀应助稽TR采纳,获得10
4秒前
在水一方应助万尧采纳,获得10
4秒前
了0完成签到 ,获得积分10
4秒前
capon发布了新的文献求助10
5秒前
英俊的铭应助DreamerKing采纳,获得10
5秒前
可爱的函函应助ybwei2008_163采纳,获得10
6秒前
hey完成签到,获得积分10
6秒前
轩辕忆枫完成签到,获得积分10
8秒前
10秒前
汉堡包应助豆包采纳,获得10
11秒前
momo完成签到,获得积分10
12秒前
13秒前
13秒前
传奇3应助manguang采纳,获得10
14秒前
sunflower完成签到,获得积分10
15秒前
lyh的老公发布了新的文献求助10
16秒前
mm发布了新的文献求助20
16秒前
干净仰完成签到,获得积分10
17秒前
MSG完成签到,获得积分10
17秒前
了0完成签到 ,获得积分10
18秒前
1233330完成签到,获得积分10
18秒前
DreamerKing发布了新的文献求助10
19秒前
20秒前
孙燕应助wangrswjx采纳,获得10
20秒前
NexusExplorer应助茹茹采纳,获得10
24秒前
Chen完成签到 ,获得积分10
27秒前
小瞎子_Zora完成签到 ,获得积分10
28秒前
科研顺利完成签到,获得积分10
30秒前
6666666666完成签到 ,获得积分10
32秒前
无语的安白应助现代怀蝶采纳,获得10
32秒前
32秒前
zx完成签到,获得积分10
34秒前
35秒前
35秒前
茹茹发布了新的文献求助10
38秒前
ybwei2008_163发布了新的文献求助10
39秒前
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846014
求助须知:如何正确求助?哪些是违规求助? 3388362
关于积分的说明 10552922
捐赠科研通 3108936
什么是DOI,文献DOI怎么找? 1713223
邀请新用户注册赠送积分活动 824620
科研通“疑难数据库(出版商)”最低求助积分说明 774982