Exploring Factors Related to Social Isolation Among Older Adults in the Predementia Stage Using Ecological Momentary Assessments and Actigraphy: Machine Learning Approach

活动记录 社会孤立 心理学 生态学 阶段(地层学) 老年学 发展心理学 医学 生物 昼夜节律 古生物学 神经科学 心理治疗师
作者
Bada Kang,Min Kyung Park,Jennifer Ivy Kim,Seolah Yoon,Seok‐Jae Heo,Chang-Kwon Kang,SungHee Lee,Yong-Sung Choi,Dahye Hong
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e69379-e69379
标识
DOI:10.2196/69379
摘要

As the global population ages, the economic burden of dementia continues to rise. Social isolation-which includes limited social interaction and feelings of loneliness-negatively affects cognitive function and is a significant risk factor for dementia. Individuals with subjective cognitive decline and mild cognitive impairment represent predementia stages in which functional decline may still be reversible. Therefore, identifying factors related to social isolation in these at-risk groups is crucial, as early detection and intervention can help mitigate the risk of further cognitive decline. This study aims to develop and validate machine learning models to identify and explore factors related to social interaction frequency and loneliness levels among older adults in the predementia stage. The study included 99 community-dwelling older adults aged 65 years and above in the predementia stage. Social interaction frequency and loneliness levels were assessed 4 times daily using mobile ecological momentary assessment over a 2-week period. Actigraphy data were categorized into 4 domains: sleep quantity, sleep quality, physical movement, and sedentary behavior. Demographic and health-related survey data collected at baseline were also included in the analysis. Machine learning models, including logistic regression, random forest, Gradient Boosting Machine, and Extreme Gradient Boosting, were used to explore factors associated with low social interaction frequency and high levels of loneliness. Of the 99 participants, 43 were classified into the low social interaction frequency group, and 37 were classified into the high loneliness level group. The random forest model was the most suitable for exploring factors associated with low social interaction frequency (accuracy 0.849; precision 0.837; specificity 0.857; and area under the receiver operating characteristic curve 0.935). The Gradient Boosting Machine model performed best for identifying factors related to high loneliness levels (accuracy 0.838; precision 0.871; specificity 0.784; and area under the receiver operating characteristic curve 0.887). This study demonstrated the potential of machine learning-based exploratory models, using data collected from mobile ecological momentary assessment and wearable actigraphy, to detect vulnerable groups in terms of social interaction frequency and loneliness levels among older adults with subjective cognitive decline and mild cognitive impairment. Our findings highlight physical movement as a key factor associated with low social interaction frequency, and sleep quality as a key factor related to loneliness. These results suggest that social interaction frequency and loneliness may operate through distinct mechanisms. Ultimately, this approach may contribute to preventing cognitive and physical decline in older adults at high risk of dementia. RR2-10.1177/20552076241269555.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助摆烂研究牲采纳,获得10
刚刚
刚刚
刚刚
2秒前
jiao发布了新的文献求助10
3秒前
大气从安完成签到,获得积分10
3秒前
研友_VZG7GZ应助gengsumin采纳,获得10
4秒前
4秒前
孤独的狼发布了新的文献求助10
4秒前
xixi发布了新的文献求助30
4秒前
yly123发布了新的文献求助10
5秒前
5秒前
丸子_2025000完成签到,获得积分10
5秒前
Driscoll完成签到 ,获得积分10
6秒前
高高的蓝天完成签到 ,获得积分10
6秒前
Owen应助欣喜的念芹采纳,获得10
8秒前
baolequ发布了新的文献求助10
8秒前
鹿c3完成签到,获得积分10
9秒前
这瓜不卖完成签到,获得积分10
9秒前
孤独的狼完成签到,获得积分10
12秒前
qiaoshan_Jason完成签到,获得积分10
13秒前
脑洞疼应助爱学习的子正采纳,获得10
14秒前
zhang完成签到,获得积分10
14秒前
14秒前
Jasper应助科研通管家采纳,获得10
15秒前
deallyxyz应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
15秒前
Orange应助穆亦擎采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
16秒前
大个应助科研通管家采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966029
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157644
捐赠科研通 3245890
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804296