A Lightweight Statistical Multi‐Feature Adaptive Attention Network for Dermoscopic Image Segmentation

计算机科学 人工智能 特征(语言学) 模式识别(心理学) 分割 图像(数学) 计算机视觉 图像分割 语言学 哲学
作者
Weiye Cao,Kaiyan Zhu,Tong Liu,Jianhao Xu,Yue Liu,Weibo Song
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:35 (5)
标识
DOI:10.1002/ima.70190
摘要

ABSTRACT With the advent of Transformer architectures, the segmentation performance of dermoscopic images has been significantly enhanced. However, the substantial computational load associated with Transformers limits their feasibility for deployment on resource‐constrained mobile devices. To address this challenge, we propose a Statistical Multi‐feature Adaptive Attention Network (SFANet) that aims to achieve a balance between segmentation accuracy and computational efficiency. In SFANet, we propose a Multi‐dilation Asymmetric Convolution Block (MDACB) and a Group Feature Mask Enhancement Component (GMEC). MDACB is composed of Multi‐dilation Asymmetric Convolution (MDAC), a set of ultra‐lightweight Statistical Multi‐feature Adaptive Spatial Recalibration Attention (SASA) modules, Statistical Multi‐feature Adaptive Channel Recalibration Attention (SACA) modules, and residual connections. MDAC efficiently captures a wider range of contextual information while maintaining a lightweight structure. SASA and SACA integrate multi‐statistical features along spatial and channel dimensions, adaptively fusing mean, maximum, standard deviation, and energy via learnable weights. Convolution operations then model spatial dependencies and capture cross‐channel interactions to generate attention weights, enabling precise feature recalibration in both dimensions. GMEC groups features from lower decoding layers and skip connections, and then merges them with the corresponding stage‐generated masks, enabling efficient and accurate feature processing in the decoding layers while maintaining a low parameter count. Experiments on the ISIC2017, ISIC2018, and PH2 datasets demonstrate that SFANet achieves a mIoU of 80.15%, 81.12%, and 85.30%, with only 0.037 M parameters and 0.234 GFLOPs. Our code is publicly available at https://github.com/cwy1024/SFANet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjn完成签到,获得积分20
刚刚
MJ完成签到,获得积分10
刚刚
1秒前
顾矜应助超级训熊师采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
yangl完成签到 ,获得积分10
2秒前
3秒前
3秒前
wanci应助liuwenjie采纳,获得10
4秒前
zjn发布了新的文献求助20
4秒前
Jasper应助California采纳,获得10
4秒前
4秒前
TTT080111发布了新的文献求助10
5秒前
shijie完成签到,获得积分10
5秒前
5秒前
7秒前
8秒前
8秒前
大胆尔冬发布了新的文献求助10
8秒前
Verity应助shijie采纳,获得10
9秒前
9秒前
哆啦A梦完成签到,获得积分10
9秒前
叶财财发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
xiaoshan025完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
11秒前
潘旭发布了新的文献求助10
11秒前
狗子棋发布了新的文献求助10
11秒前
12秒前
啊哈发布了新的文献求助10
13秒前
芒果布丁完成签到 ,获得积分10
13秒前
14秒前
vicky发布了新的文献求助30
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5673096
求助须知:如何正确求助?哪些是违规求助? 4931657
关于积分的说明 15143422
捐赠科研通 4832403
什么是DOI,文献DOI怎么找? 2588211
邀请新用户注册赠送积分活动 1541923
关于科研通互助平台的介绍 1500013