亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AF3Score: A Score-Only Adaptation of AlphaFold3 for Biomolecular Structure Evaluation

标杆管理 蛋白质结构 计算机科学 机器学习 人工智能 计算生物学 化学 生物 生物化学 业务 营销
作者
Yu Liu,Qiang Yu,Di Wang,Mingchen Chen
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (15): 8207-8214
标识
DOI:10.1021/acs.jcim.5c00653
摘要

Scoring biomolecular complexes remains central to structural modeling efforts. Recent studies suggest that AlphaFold (AF) - a revolutionary deep learning model for biomolecular structure prediction - has implicitly learned an approximate biophysical energy function. While many researchers highly rely on AF-derived scores for structure evaluation, existing AlphaFold2-based implementations require iterative refinement of the input structure, leading to biased scoring. To address this limitation, we adapted AlphaFold3 into a score-only model, AF3Score, by directly feeding input coordinates into the confidence head while bypassing the diffusion-based structure module. AF3Score demonstrates robust performance in structural quality assessment across diverse systems, including monomeric proteins, protein-protein complexes, de novo designed binders, fold-switching proteins, and protein-ligand complexes. In benchmarking designed binder screening, AF3Score outperformed state-of-the-art methods for 8 out of 10 targets. Moreover, combining AF3Score with AlphaFold2-derived methods significantly improved the enrichment of experimentally validated binders, increasing the success rate from 15.2 to 31.6%. Additionally, AF3Score effectively identified stable conformations in fold-switching proteins, whereas AlphaFold predominantly predicted only the dominant fold. These findings highlight the broad applicability of AF3Score, from high-throughput screening in de novo binder design to filtering docking-generated poses and molecular dynamics (MD) trajectories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Funnymudpee发布了新的文献求助10
1秒前
5秒前
Rocky_Qi发布了新的文献求助10
11秒前
Rocky_Qi完成签到,获得积分10
19秒前
雪白的夜香完成签到,获得积分10
23秒前
45秒前
51秒前
1分钟前
Akiii_完成签到,获得积分10
1分钟前
1分钟前
1分钟前
hongxing liu发布了新的文献求助10
1分钟前
小李新人完成签到 ,获得积分10
1分钟前
研友_R2D2发布了新的文献求助10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
hongxing liu完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
jianglan发布了新的文献求助30
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
4分钟前
breeze发布了新的文献求助30
4分钟前
4分钟前
4分钟前
Funnymudpee发布了新的文献求助10
4分钟前
Funnymudpee完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583253
关于积分的说明 14389109
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472871
邀请新用户注册赠送积分活动 1459096
关于科研通互助平台的介绍 1432553