清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Alumina-Supported Catalyst Development for Propane Dehydrogenation via Interpretable Machine Learning and Experimental Validation

脱氢 催化作用 丙烷 计算机科学 化学 人工智能 有机化学
作者
Shitao Sun,Ziyi Liu,Junqing Li,Wenhao Meng,Huan Yang,M.Z. Zhang,Hanyang Sun,An‐Hui Lu,Dongqi Wang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:: 17759-17778
标识
DOI:10.1021/acscatal.5c06285
摘要

The direct propane dehydrogenation (PDH) reaction constitutes one of the key routes for the production of propylene and relies on the development of high-performance catalysts, which is generally achieved following a time-consuming trial-and-error strategy. In this study, a workflow of machine learning running five stages, i.e., data preparation and the development of a reliable machine learning model and its evaluation, interpretation, and application, was established to explore the data-driven research paradigm in the screening and design of catalysts for PDH with propylene yield as the target. Data from the literature on the PDH reaction catalyzed by alumina-supported catalysts were compiled. Twelve algorithms were evaluated, and the CatBoost model exhibits a high accuracy and generalization capability, with a coefficient of determination (R2) value of 0.992 for the training set and 0.973 for the test set. By employing this model, we screened two highly promising ternary catalysts. Experimental validation demonstrates that the predicted values for these two catalysts are in close agreement with the measured instantaneous propylene yields. Among the screened catalysts, PtSnZr/γ-Al2O3 exhibits a high propylene yield and maintains over 50% yield for 13.5 h. The instantaneous propylene yields on these catalysts are predicted to be further improved upon H2S pretreatment conditions. Explainable machine learning tools (Shapley additive explanations and partial dependence plot analysis) were employed to interpret the model. This study offers valuable insights into the application of machine learning in the heterogeneously catalyzed conversion of light alkanes and aids in the development of catalysts by uncovering a hidden structure–activity relationship in literature data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
3秒前
5秒前
13秒前
16秒前
Wenhao Zhao发布了新的文献求助10
17秒前
朱明完成签到 ,获得积分10
17秒前
22秒前
大医仁心完成签到 ,获得积分10
29秒前
Wenhao Zhao完成签到,获得积分10
29秒前
31秒前
蝎子莱莱xth完成签到,获得积分10
32秒前
edc完成签到,获得积分10
33秒前
orixero应助Wenhao Zhao采纳,获得10
34秒前
edc发布了新的文献求助10
36秒前
氢锂钠钾铷铯钫完成签到,获得积分10
39秒前
Square完成签到,获得积分10
45秒前
46秒前
优雅含莲完成签到 ,获得积分10
47秒前
rockyshi完成签到 ,获得积分10
47秒前
48秒前
浮游应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
1分钟前
1分钟前
1分钟前
2分钟前
CRUSADER发布了新的文献求助10
2分钟前
juan完成签到 ,获得积分0
2分钟前
李健的粉丝团团长应助Lynn采纳,获得10
2分钟前
梦里的大子刊完成签到 ,获得积分10
2分钟前
2分钟前
英姑应助CRUSADER采纳,获得10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494178
求助须知:如何正确求助?哪些是违规求助? 4591994
关于积分的说明 14435138
捐赠科研通 4524683
什么是DOI,文献DOI怎么找? 2478922
邀请新用户注册赠送积分活动 1463851
关于科研通互助平台的介绍 1436741