Nano Vitamin A Enhances Muscle Function and Exercise Performance in Mice Through Modulated Fiber‐Type Transition

肌肉纤维 心肌细胞 内科学 内分泌学 肌肉无力 医学 骨骼肌 化学
作者
Ruotong Li,Wenye Zhao,Jiaxin Zhang,Jiayi Chen,Wenrun Cai,Xiaoyin Rong,Yang Yang,Bugao Li,Meng Li,Xiaohong Guo
出处
期刊:The FASEB Journal [Wiley]
卷期号:39 (20)
标识
DOI:10.1096/fj.202501417rr
摘要

ABSTRACT The global increase in muscle weakness poses a critical public health concern. Nutritional interventions that improve muscular function hold promise as a therapeutic potential. Vitamin A (VA) and its active metabolites have been implicated in muscle development and the transformation of muscle fiber types. However, conventional VA formulations are restricted by poor stability and low bioavailability. In this study, a stable Nano VA was utilized to systematically evaluate its effects on muscle development and exercise performance in mice, as well as to explore its underlying mechanisms. A total of 44 male C57BL/6J mice were randomly divided into four groups: (i) normal control (NC), (ii) 5 mg/kg Nano VA (5 NVA), (iii) 10 mg/kg Nano VA (10 NVA), and (iv) 10 mg/kg VA (10 VA). The 10 NVA group demonstrated significantly improved muscle strength and swimming endurance, compared with the NC group. Further examination suggested a significant increase in myofiber diameter, cross‐sectional area, and the content of fast‐twitch fibers. Additionally, Nano VA treatment improved glucose tolerance and insulin sensitivity. To elucidate the mechanism by which Nano VA enhances muscle locomotor ability, transcriptomics and metabolomics data identified 111 differentially expressed genes and 253 differential metabolites. Of these, Angptl 4, Ppp 1 r 3 a , and Cyp 26 b 1 were identified as candidate regulators of muscle development and myofiber type transformation. In conclusion, Nano VA regulates muscle development and promotes muscle fiber type conversion, thus improving muscle strength and endurance in mice. Moreover, Nano VA facilitates mitigating and improving myasthenia gravis‐related conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助LFC采纳,获得10
1秒前
着急的凌青完成签到 ,获得积分10
1秒前
1112222发布了新的文献求助10
1秒前
jackyLee完成签到,获得积分10
2秒前
爆米花应助hay采纳,获得10
2秒前
2秒前
3秒前
董菲音发布了新的文献求助10
3秒前
ZZZ完成签到,获得积分10
3秒前
健忘晓霜发布了新的文献求助10
4秒前
Margot发布了新的文献求助10
4秒前
英姑应助fujili采纳,获得10
4秒前
4秒前
终抵星空发布了新的文献求助10
5秒前
小小完成签到,获得积分10
5秒前
5秒前
Jasper应助毅然采纳,获得10
5秒前
liuhao发布了新的文献求助10
6秒前
CodeCraft应助xiaoli采纳,获得10
6秒前
鹤野发布了新的文献求助10
6秒前
8秒前
老阎应助ganguo1989采纳,获得30
8秒前
Ava应助杏花饼采纳,获得10
8秒前
自觉的绿蝶完成签到 ,获得积分10
8秒前
蒋念寒发布了新的文献求助10
8秒前
9秒前
天天快乐应助joleisalau采纳,获得10
9秒前
俊秀的念烟完成签到,获得积分10
9秒前
脑洞疼应助武雨珍采纳,获得10
10秒前
10秒前
10秒前
TIX完成签到 ,获得积分10
11秒前
Mottri发布了新的文献求助10
11秒前
xingmeng完成签到,获得积分10
12秒前
王伟毅完成签到,获得积分10
12秒前
青木发布了新的文献求助10
12秒前
今后应助cdercder采纳,获得10
13秒前
13秒前
直白发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676