清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning in the prediction of treatment response for emotional disorders: A systematic review and meta-analysis

心理学 荟萃分析 心理治疗师 临床心理学 认知心理学 医学 内科学
作者
Joshua Curtiss,Christopher P. DiPietro
出处
期刊:Clinical Psychology Review [Elsevier BV]
卷期号:120: 102593-102593
标识
DOI:10.1016/j.cpr.2025.102593
摘要

Emotional disorders such as depression and anxiety affect millions globally and pose a significant burden on public health. Personalized treatment approaches using machine learning (ML) to predict treatment response could revolutionize treatment strategies. However, there is limited evidence as to whether ML is successful in predicting treatment outcomes. This meta-analysis aims to evaluate the accuracy of ML algorithms in predicting binary treatment response (responder vs. non-responder) to evidence-based psychotherapies, pharmacotherapies, and other treatments for emotional disorders, and to examine moderators of prediction accuracy. Following PRISMA guidelines, a comprehensive literature search was conducted across PubMed and PsycINFO from January 1st, 2010 to March 27th, 2025. Studies were included if they used ML methods to predict treatment response in patients with emotional disorders. Data were extracted on sample size, type of treatment, predictors used, ML methods, and prediction accuracy. Meta-analytic techniques were used to synthesize findings and identify moderators of prediction accuracy. Out of 3816 non-duplicate records, 155 studies met inclusion criteria. The overall mean prediction accuracy was 0.76 (95 % CI: 0.74-0.78), and the mean area under the curve was 0.80 indicating good discrimination. The average sensitivity and specificity were 0.73 and 0.75, respectively. Moderator analyses indicated that studies using more robust cross-validation procedures exhibited higher prediction accuracy. Neuroimaging data as predictors were associated with higher accuracy compared to clinical and demographic data. Moreover, results indicated that studies with larger responder rates, as well as those that did not correct for imbalances in outcome rates, were associated with higher prediction accuracy. ML methods show promise in predicting treatment response for emotional disorders, with varying degrees of accuracy depending on the type of predictors used and the rigor of methodological procedures implemented. Future research should focus on improving methodological integrity and exploring the integration of multimodal data to enhance prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
11秒前
xiu完成签到,获得积分10
14秒前
沉静香氛完成签到 ,获得积分10
14秒前
Yafeiyy___完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
美好灵寒完成签到 ,获得积分10
25秒前
26秒前
1437594843完成签到 ,获得积分10
27秒前
平凡完成签到,获得积分10
28秒前
ywzwszl完成签到,获得积分10
46秒前
47秒前
hello87发布了新的文献求助10
48秒前
平常的三问完成签到 ,获得积分10
49秒前
Wen完成签到 ,获得积分0
49秒前
吴晓峰发布了新的文献求助10
52秒前
熊i发布了新的文献求助10
53秒前
xiu发布了新的文献求助10
58秒前
Nikola完成签到 ,获得积分10
1分钟前
无限的含羞草完成签到,获得积分10
1分钟前
大气的哈密瓜完成签到,获得积分10
1分钟前
jlwang完成签到,获得积分10
1分钟前
NexusExplorer应助吴晓峰采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
vsvsgo完成签到,获得积分10
1分钟前
xiaowanzi完成签到 ,获得积分10
1分钟前
李健应助xiu采纳,获得10
1分钟前
1分钟前
幽默滑板完成签到,获得积分10
1分钟前
像猫的狗完成签到 ,获得积分10
2分钟前
elitistwj完成签到,获得积分10
2分钟前
望向天空的鱼完成签到 ,获得积分10
2分钟前
herpes完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
姚老表完成签到,获得积分10
3分钟前
爆米花应助优雅的听兰采纳,获得10
3分钟前
3分钟前
3分钟前
ZZzz完成签到 ,获得积分10
3分钟前
优雅的听兰完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Global Immunoassay Market: Trends, Technologies, and Growth Opportunities, 2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4280504
求助须知:如何正确求助?哪些是违规求助? 3808459
关于积分的说明 11929404
捐赠科研通 3455805
什么是DOI,文献DOI怎么找? 1895189
邀请新用户注册赠送积分活动 944489
科研通“疑难数据库(出版商)”最低求助积分说明 848291