可药性
结直肠癌
癌症
机制(生物学)
医学
癌症研究
肿瘤科
内科学
生物
遗传学
哲学
基因
认识论
作者
Stephen L. DeAngelo,Liang Zhao,Sofia Dziechciarz,Myungsun Shin,Sumeet Solanki,Andrii Balia,Marwa O. El-Derany,Cristina Castillo,Yao Qin,Nupur K. Das,Hannah N. Bell,João A. Paulo,Yuezhong Zhang,Nicholas J. Rossiter,Elizabeth C. McCulla,Jianping He,Indrani Talukder,Wai‐Lung Ng,Zachary T. Schafer,Nouri Neamati
出处
期刊:Cancer Research
[American Association for Cancer Research]
日期:2025-05-19
卷期号:85 (15): 2788-2804
标识
DOI:10.1158/0008-5472.can-24-3478
摘要
Abstract Ferroptosis is a nonapoptotic form of cell death driven by iron-dependent lipid peroxide accumulation. Colorectal cancer cells feature elevated intracellular iron and reactive oxygen species that heighten ferroptosis sensitivity. The ferroptosis inducer (S)-RSL3 [(1S,3R)-RSL3] is widely described as a selective inhibitor of the selenocysteine-containing enzyme (selenoprotein) glutathione peroxidase 4 (GPX4), which detoxifies lipid peroxides using glutathione. However, through chemical controls using the (R) stereoisomer of RSL3 [(1R,3R)-RSL3] that does not bind GPX4, combined with inducible genetic knockdowns of GPX4 in colorectal cancer cell lines, we revealed in this study that GPX4 dependency does not always align with (S)-RSL3 sensitivity, thereby questioning the current characterization of GPX4 as the primary target of (S)-RSL3. Affinity pull-down mass spectrometry with modified (S)-RSL3 probes identified multiple selenoprotein targets, indicating broad selenoprotein inhibition. Further investigation of the therapeutic potential of broadly disrupting the selenoproteome as a therapeutic strategy in colorectal cancer showed that the selenoprotein inhibitor auranofin, an FDA-approved gold salt, chemically induced oxidative cell death and ferroptosis in colorectal cancer models in vitro and in vivo. Similarly, genetic perturbation of ALKBH8, a tRNA-selenocysteine methyltransferase required for selenoprotein translation, suppressed colorectal cancer growth. In summary, these findings recharacterize the mechanism of (S)-RSL3 beyond GPX4 inhibition and establish selenoproteome disruption as a colorectal cancer therapeutic strategy. Significance: Chemoproteomic profiling reveals that RSL3 functions through pan-selenoprotein inhibition beyond GPX4 and identifies ALKBH8, a tRNA-selenocysteine methyltransferase essential for selenoprotein translation, as a therapeutic target to disrupt redox balance in colorectal cancer. See related commentary by Short, p. 2775
科研通智能强力驱动
Strongly Powered by AbleSci AI