亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved salp swarm algorithm based optimization of mobile task offloading

计算机科学 群体行为 任务(项目管理) 优化算法 人工智能 算法 数学优化 数学 工程类 系统工程
作者
R. Aishwarya,G. Mathivanan
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:11: e2818-e2818
标识
DOI:10.7717/peerj-cs.2818
摘要

Background The realization of computation-intensive applications such as real-time video processing, virtual/augmented reality, and face recognition becomes possible for mobile devices with the latest advances in communication technologies. This application requires complex computation for better user experience and real-time decision-making. However, the Internet of Things (IoT) and mobile devices have computational power and limited energy. Executing these computational-intensive tasks on edge devices may result in high energy consumption or high computation latency. In recent times, mobile edge computing (MEC) has been used and modernized for offloading this complex task. In MEC, IoT devices transmit their tasks to edge servers, which consecutively carry out faster computation. Methods However, several IoT devices and edge servers put an upper limit on executing concurrent tasks. Furthermore, implementing a smaller size task (1 KB) over an edge server leads to improved energy consumption. Thus, there is a need to have an optimum range for task offloading so that the energy consumption and response time will be minimal. The evolutionary algorithm is the best for resolving the multiobjective task. Energy, memory, and delay reduction together with the detection of the offloading task is the multiobjective to achieve. Therefore, this study presents an improved salp swarm algorithm-based Mobile Application Offloading Algorithm (ISSA-MAOA) technique for MEC. Results This technique harnesses the optimization capabilities of the improved salp swarm algorithm (ISSA) to intelligently allocate computing tasks between mobile devices and the cloud, aiming to concurrently minimize energy consumption, and memory usage, and reduce task completion delays. Through the proposed ISSA-MAOA, the study endeavors to contribute to the enhancement of mobile cloud computing (MCC) frameworks, providing a more efficient and sustainable solution for offloading tasks in mobile applications. The results of this research contribute to better resource management, improved user interactions, and enhanced efficiency in MCC environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白的面包完成签到 ,获得积分10
2秒前
机灵柚子应助ddrose采纳,获得10
3秒前
李李完成签到,获得积分20
3秒前
4秒前
迷你的靖雁完成签到,获得积分10
5秒前
李李发布了新的文献求助10
11秒前
LOST完成签到 ,获得积分10
13秒前
严逍遥完成签到 ,获得积分10
16秒前
19秒前
LULU发布了新的文献求助10
23秒前
lone623完成签到 ,获得积分10
26秒前
glaze完成签到 ,获得积分10
27秒前
31秒前
31秒前
34秒前
LULU完成签到,获得积分10
36秒前
健康的大门完成签到,获得积分10
36秒前
王某人完成签到 ,获得积分10
38秒前
39秒前
zyjx完成签到 ,获得积分10
42秒前
47秒前
57秒前
1分钟前
1分钟前
1分钟前
恋雅颖月完成签到 ,获得积分10
1分钟前
jianguo完成签到,获得积分10
1分钟前
起个名不麻烦完成签到 ,获得积分10
1分钟前
舒心的青亦完成签到 ,获得积分10
1分钟前
1分钟前
研友_nER2JZ发布了新的文献求助40
1分钟前
Veronica完成签到,获得积分10
1分钟前
倷倷完成签到 ,获得积分10
1分钟前
美罗培南完成签到,获得积分10
1分钟前
科研通AI5应助谢芝朗采纳,获得10
1分钟前
合一海盗完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
yuyu完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346371
关于积分的说明 10329161
捐赠科研通 3062821
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807442
科研通“疑难数据库(出版商)”最低求助积分说明 763702