Automating building typology identification for seismic risk assessment using deep learning

类型学 鉴定(生物学) 地震风险 工程类 风险评估 法律工程学 建筑工程 土木工程 地震学 地质学 风险分析(工程) 计算机科学 地理 业务 考古 计算机安全 植物 生物
作者
Daniel Gómez,Daniela Charris,Winston S. Percybrooks,Carlos A. Arteta
出处
期刊:Earthquake Spectra [SAGE]
标识
DOI:10.1177/87552930251327435
摘要

Driven by rapid urbanization and heightened seismic risk concerns, efficient methods for developing regional seismic exposure assessments are advantageous. By leveraging deep learning and computer vision techniques, this study presents a novel approach for automating the identification of building typologies. The detailed building stock required for seismic exposure assessment has been traditionally achieved through time-consuming and costly in-person inspections. Recently, virtual inspections have emerged as a more efficient alternative, but they still require significant manual effort. This study proposes a methodology for automating the characterization of buildings, including details such as the number of stories, structural system, and construction period (pre-code or code), by implementing a convolutional neural network model that processes labeled images from Google Street View. A key innovation of this study is the integration of pre-processing techniques, including an object detector to isolate building façades and perspective correction using a keypoint model and homography transformation, enabling robust performance even with a small data set. This research advances prior methods by classifying individual stories rather than grouping them into broad taxonomic ranges, providing greater precision and applicability for seismic exposure modeling. The results show an 88% accuracy for structural system identification, a 78% accuracy for the number of stories, and a 69% accuracy for construction period determination. These characteristics are integrated into a probabilistic distribution model of building taxonomy that informs about their potential seismic vulnerability. The proposed procedures streamline the development of building stock and seismic exposure models, thus facilitating their use for seismic risk modeling at a regional scale.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
yui发布了新的文献求助10
2秒前
闪闪的诗珊应助xzj采纳,获得20
2秒前
respectzero完成签到 ,获得积分10
2秒前
丘比特应助WangSiwei采纳,获得10
3秒前
量子星尘发布了新的文献求助30
3秒前
MCY完成签到,获得积分10
3秒前
英姑应助JASONLIU采纳,获得10
3秒前
领导范儿应助大力的图图采纳,获得30
4秒前
4秒前
Sam十九发布了新的文献求助10
5秒前
5秒前
完美世界应助X2904063719采纳,获得30
7秒前
BLJ发布了新的文献求助10
8秒前
SJW123完成签到 ,获得积分10
8秒前
上官若男应助修越采纳,获得10
8秒前
最美好的祝福完成签到,获得积分10
8秒前
10秒前
mhpvv发布了新的文献求助10
10秒前
无花果应助Aloysia采纳,获得10
12秒前
bearx发布了新的文献求助10
13秒前
13秒前
JASONLIU给JASONLIU的求助进行了留言
13秒前
15秒前
科研通AI6.1应助临济知阳采纳,获得10
16秒前
黑米粥发布了新的文献求助50
17秒前
18秒前
18秒前
18秒前
叶子宁发布了新的文献求助10
19秒前
21秒前
21秒前
丘比特应助顺心凝天采纳,获得10
22秒前
bkagyin应助小闵采纳,获得10
23秒前
RR完成签到 ,获得积分10
23秒前
万能图书馆应助小草没采纳,获得10
24秒前
卢雅妮完成签到 ,获得积分10
24秒前
X2904063719发布了新的文献求助30
25秒前
量子星尘发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793649
求助须知:如何正确求助?哪些是违规求助? 5751081
关于积分的说明 15486624
捐赠科研通 4920583
什么是DOI,文献DOI怎么找? 2649020
邀请新用户注册赠送积分活动 1596334
关于科研通互助平台的介绍 1550891