Machine Learning‐Driven Band Alignment Strategy for Screening 1T‐TMDs‐Based Z‐Scheme Heterostructures toward Efficient Photocatalytic Water Splitting

异质结 分解水 光催化 密度泛函理论 材料科学 单层 光催化分解水 光电子学 可见光谱 析氧 化学物理 光化学 纳米技术 计算机科学 化学 计算化学 催化作用 电化学 物理化学 生物化学 电极
作者
Wenxue Zhang,Mengmei Nie,Cheng He
出处
期刊:Small [Wiley]
卷期号:21 (31): e2504095-e2504095 被引量:7
标识
DOI:10.1002/smll.202504095
摘要

Abstract To address the global energy crisis and mitigate environmental challenges stemming from fossil fuel dependence, advancing efficient photocatalytic water splitting technology has become a critical focus in renewable energy research. An innovative design strategy for high‐efficiency photocatalysts based on band edge alignment is established through the integration of machine learning (ML) and first‐principles computational methods, developing a high‐throughput screening framework specifically targeting 1T‐phase transition metal dichalcogenides (1T‐TMDs). Through optimized feature selection, ML models, and training protocols, the PdSSe monolayer is identified as exhibiting ideal band edge compatibility with the GeC monolayer. Subsequent density functional theory (DFT) verification confirmed exceptional agreement with ML predictions. The GeC/SPdSe Z‐scheme heterostructure achieves remarkable photocatalytic efficiency, driven by its optimally aligned band structure that enables spontaneous hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under visible‐light irradiation. Nonadiabatic molecular dynamics (NAMD) simulations reveal that photo‐generated carriers in heterostructures follow a Z‐scheme pathway, as supported by distinct timescales of electron‐hole migration and recombination. This heterostructure architecture exhibits broadband light absorption spanning the visible to ultraviolet spectral regions, yielding a remarkable theoretical solar‐to‐hydrogen (STH) efficiency of 29.5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助Nell采纳,获得20
刚刚
天道酬勤完成签到,获得积分20
刚刚
1秒前
朱雀应助琳666采纳,获得10
1秒前
肥牛完成签到,获得积分10
2秒前
韩野发布了新的文献求助10
3秒前
科研通AI2S应助Swj采纳,获得10
3秒前
5High_0发布了新的文献求助10
3秒前
jw完成签到,获得积分10
3秒前
LucyLi发布了新的文献求助10
3秒前
科研小白发布了新的文献求助10
4秒前
mia完成签到,获得积分10
4秒前
6秒前
xhj666完成签到,获得积分10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
YsGao应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
YsGao应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
LaTeXer应助科研通管家采纳,获得100
9秒前
浮游应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
YsGao应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
大龙哥886应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
YsGao应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
YsGao应助科研通管家采纳,获得10
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314